Читаем Десять великих идей науки. Как устроен наш мир. полностью

где каждое число во внутренних клетках таблицы есть (фальшивый) гёделевский номер соответствующего предложения. Так, фальшивый гёделевский номер предложения p3(x) относительно числа 2 равен 11.

Теперь составим отдельный список гёделевских номеров всех предложений, которые являются доказуемыми с помощью аксиом системы. Подобно нашему предположению о существовании заслуживающей доверия машины Тьюринга для решения вопроса о том, остановятся вычисления или нет, мы предположим, что такой список может быть составлен, но если это приведет нас к противоречию, нам придется отвергнуть это предположение.

И здесь, как и в аргументах Тьюринга, нас ожидает провал. Рассмотрим следующее предложение:

Гёделевский номер этого диагонального члена отсутствует в списке доказуемых утверждений.

«Диагональным членом» является предложение относительно собственного номера предложения, например, предложение p2 относительно числа 2. Поскольку это утверждение является предложением, оно должно уже содержаться где-то в первоначальном исчерпывающем списке предложений. Для простоты давайте предположим, что оно оказывается Предложением 2. Коль это так, рассмотрим соответствующий диагональный гёделевский номер, который в этом случае равен 30. Этот гёделевский номер соответствует Предложению 2 относительно числа 2, которое гласит:

Не существует доказательства Предложения 2 относительно числа 2.

Теперь мы подходим к противоречию. Предположим, что мы узнали, обратись к полному списку доказуемых утверждений, что это предложение действительно верно (а значит, его гёделевский номер должен быть в списке доказуемых утверждений), то есть можно доказать, что доказательства Предложения 2 относительно числа 2 не существует. Тогда у нас получается противоречие, поскольку, если не существует доказательства Предложения 2 относительно числа 2, то его номера не должно быть в списке доказуемых утверждений! Если мы вместо этого предположим, что предложение о том, что не существует доказательства Предложения 2 относительно числа 2, является ложным, тогда его нет в списке доказуемых утверждений, а тогда это предложение истинно!

Мы достигли точки, в которой нам приходится заключить, что система аксиом, которой мы пользуемся, недостаточна для того, чтобы принять решение о том, что верно: это предложение или его отрицание. Математика неполна. Это означает, что существует бесконечное число математических утверждений, которые, возможно, верны, но не могут быть выведены из данного множества аксиом. В этом состоит основание для одного из моих вводных замечаний. Удивительно не только то, что мы можем считать (поскольку натуральные числа столь редки во вселенной всех чисел), удивительно, что мы можем делать с числами что-то арифметическое (потому что формально доказуемые выражения являются тоже очень редкими).

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия