Заключение Гёделя не стало судным днем математики. Во-первых, могут существовать неалгоритмические методы установления истинности утверждений, так же как может быть невозможно формально доказать, что определенная позиция в шахматах не приводит к мату, но ее можно увидеть с более объемлющей точки зрения. То есть может существовать метаматематическое доказательство утверждения, которое не может быть доказано внутри формальной системы. То, что человеческий ум способен порождать такие неформальные, но вполне надежные доказательства, является окном в природу сознания, ибо это показывает, что понимание и рефлексия не нуждаются в том, чтобы быть алгоритмическими.
Математика прошла через три главных кризиса в своей истории. Первым было открытие древними греками несоизмеримости и существования иррациональных чисел, обрушившее философию пифагорйцев. Вторым было появление дифференциального исчисления в семнадцатом веке, сопровождавшееся страхом, что иметь дело с бесконечно малыми незаконно. Третьим кризисом стало столкновение с антиномиями в начале двадцатого века, такими как антиномия Рассела или парадокс Берри, которые, как казалось, подорвали основы этой науки. В свете этого кажется замечательным, что математика выжила как дисциплина. Тем, что это произошло, мы обязаны старому доброму здравому смыслу: существует огромная и чудесная наука математика, которая, по-видимому, превосходно работает, и было бы глупо отметать предмет, приводящий к таким замечательным успехам, даже если и есть ненадежные области в глубинах его структуры. Работающие математики могут продолжать трудиться без страха и не заботясь о трещинах глубоко в основании, которые, как они предполагают, навряд ли могут проложить себе путь на поверхность в любом. актуальном приложении. Второй причиной, конечно, является то, что математика просто слишком полезна и является наилучшим языком описания физического мира. Пропади математика, пропали бы большинство наук, торговля, транспорт, промышленность и средства связи.
Но возникает вопрос: почему математика, высший продукт человеческого ума, так великолепно приспособлена для описания Природы? И здесь я позволю себе заключительную завитушку, личный полет фантазии, представляющий собой чистую спекуляцию, не основанную на науке и поэтому совершенно лишенную всякой авторитетности. Это покажет, каким я на самом деле являюсь греком (древним, разумеется) и кантианцем в душе, несмотря на мои малодушные насмешки над их спекулятивными философиями. Здесь я намереваюсь быть более греком, чем сами греки, поглядеть, не являюсь ли я более кантианцем, чем сам Кант, и исследовать вопрос: а не существует ли глубокой связи между платоновским реализмом, кантианством и брауэровским интуиционизмом, а также гильбертовским формализмом?
В проблеме, с которой мы столкнулись, есть два главных момента. Один заключается в том, что математика есть внутренний продукт человеческого ума. Второй состоит в том, что математика оказывается удивительно хорошо приспособленной к описанию внешнего физического мира. Как это получается, что внутреннее так хорошо соответствует внешнему? Если мы примем кантианский взгляд на мозг, мы можем предположить, что он развивался таким способом, который наделил его способностью различать множества, соответствующие натуральным числам (в кантовских терминах, синтетическим