Сократ. Ты видишь скалу на другом берегу реки, там, где река расширяется и образует как бы озеро?
Гиппократ. Вижу.
Сократ. А ты видишь отражение скалы в воде?
Гиппократ. Конечно.
Сократ. Тогда скажи, какая разница между скалой и ее отражением?
Гиппокра т. Скала — твердый кусок тяжелого вещества. Она нагревается на солнце. И на ощупь грубая. Отражение нельзя потрогать. Если положить на него руку, то ощутишь только прохладную воду. Па самом деле отражения не существует. Это иллюзия — и ничего больше.
Сократ. Значит, нет ничего общего между скалой и ее отражением?
Гиппократ. В определенном смысле отражение есть точная копия скалы. Контуры скалы, даже самые маленькие ее складки ясно видны в отражении. Но что из того? Неужели ты хочешь сказать, что мир математики — это отражение действительного мира в зеркале нашего мышления?
Сократ. Ты сказал очень хорошо.
Гиппократ. Но как же это возможно?
Сократ. Вспомни, как развивались абстрактные математические понятия. Мы говорили, что математики имеют дело с отвлеченными числами, а не с количествами реальных предметов. Но думаешь ли ты, что тот, кто никогда не считал действительных предметов, может постичь абстрактное понятие числа? Так и в геометрии. Ребенок приходит к понятию шара благодаря общению с круглыми предметами, например с мячами. Все основные математические понятия человечество развило таким же путем. Эти понятия выкристаллизовывались из знаний о реальном мире, и совершенно естественно, что они сохраняют следы своего происхождения, подобно тому как дети сохраняют черты своих родителей. И точно так же как дети, когда они подрастают, становятся поддержкой своих родителей, так и некоторые отрасли математики, если они достаточно разработаны, становятся полезными инструментами в исследовании действительного мира.
Гиппократ. Теперь мне вполне ясно, как познание несуществующих понятий мира математики может быть полезно в повседневной жизни. Ты оказал мне большую услугу, помогая понять это.
Сократ. Завидую тебе, дорогой мой Гиппократ, потому что мне лично хотелось бы кое-что обосновать. Вероятно, ты сможешь помочь мне.
Гиппократ. Я сделаю это с удовольствием, но боюсь, ты снова подшучиваешь надо мной. Не смущай меня просьбой о помощи, а лучше разъясни вопрос, которого я не заметил.
Сократ. Ты и сам увидишь, если попытаешься подвести итоги нашей беседы.
Гиппократ. Хорошо. Когда стало ясно, почему математика может дать определенные знания о мире, отличном от мира, в котором мы Живем, то есть о мире человеческого мышления, остался вопрос о том, какова польза этого познания. Сейчас мы выяснили, что мир математики— не что иное, как отражение в нашем сознании реального мира. Теперь понятно, что каждое открытие в мире математики дает некоторую информацию о действительном мире. Я полностью удовлетворен ответом.
Сократ. Если я скажу, что ответ не вполне законченный, то сделаю это не для того, чтобы смутить тебя, а потому, что уверен — раньше или позже ты сам задашь подобный вопрос и упрекнешь меня в том, что я не обратил на него твоего внимания. Ты спросишь: «Скажи мне, Сократ, какой смысл в изучении отраженных образов, если мы можем изучать сами предметы?»
Гиппократ. Ты совершенно прав, это очевидный вопрос. Ты волшебник, Сократ. Ты способен смутить меня несколькими словами и невинным с виду вопросом разрушить здание, построенное с таким большим трудом. Я могу, конечно, ответить, что если есть возможность взглянуть на оригинал, то бессмысленно рассматривать его отражение. Но я уверен, что это доказывает только то, что наше сравнение неудачное. Конечно, ответ где-то здесь, но я не знаю, как его найти.
Сократ. Твоя догадка верна, парадокс возник из-за того, что мы считали сходство отражения и образа слишком уж близким. Сходство подобно луку — если ты натягиваешь его слишком сильно, он ломается. Оставим этот пример и выберем другой. Ты, конечно, знаешь, что путешественники и мореплаватели пользуются картами.
Гиппократ. Я знаю это по собственному опыту. Ты считаешь, что математики составляют карту реального мира.
Сократ. Да. Можешь ли ты теперь ответить на вопрос: в чем преимущество взгляда на карту по сравнению со взглядом на ландшафт?
Гиппократ. Здесь все ясно: пользуясь картой, мы изучаем огромные расстояния, которые, путешествуя, мы можем разглядеть только за многие недели или месяцы. На карте показаны не детали, а только наиболее важные предметы. Поэтому карты очень полезны, если кто-либо собирается в длительное путешествие.
Сократ. Превосходно. Но мне на ум пришло еще кое-что.
Гиппократ. Что же?
Сократ. Есть другая причина, почему изучение математических представлений мира может быть полезно. Если математики обнаруживают какое-то свойство круга, это в то же время дает нам некоторую информацию о любом объекте круглой формы. Таким образом, математический метод позволяет в одно и то же время иметь дело с различными вещами.