Архимед. Это совсем не так просто. Часто случается, что теоремы, в которой кто-то нуждается, не существует, и тогда приходится самому находить и доказывать ее. Но даже если для практической ситуации не обязательно находить математический образ, как ты говоришь (я предпочитаю называть его математической моделью), это не то же самое, что подобрать пару перчаток. Прежде всего для одной и той же практической ситуации можно сконструировать много математических моделей и выбрать наиболее подходящую из них, которая соответствует ситуации настолько близко, насколько того требует практическая цель (она может даже не соответствовать ей полностью). В то же время модель должна быть не слишком сложной и математически осуществимой. Все эти требования, конечно, противоречивы, и необходимо искусное балансирование ими. Нужно найти хорошее приближение к реальной ситуации по всем важным для наших целей пунктам и пренебречь теми, которые не важны для нас- Модель не обязана быть подобной моделируемому явлению во всех деталях, а только в тех из них, которые действительно важны. С другой стороны, одна и та же математическая модель годится для совершенно различных практических ситуаций. Например, я использовал свойства параболы при конструировании катапульты, так как путь камня, брошенного катапультой, до некоторой степени может быть аппроксимирован параболой. Я использовал параболу еще при подсчете глубины погружения корабля под действием собственного веса. Конечно, поперечное сечение корабля не имеет точной формы параболы, но более реалистическая модель не была бы математически осуществима. Тем не менее результаты достаточно хорошо согласуются с фактами. В частности, я смог найти условия, при которых корабль, находясь под действием волн и ветра, сохранит вертикальное положение, потому что его центр тяжести будет стремиться занять самое низкое возможное положение. Пытаясь описать сложную ситуацию, можно применять очень грубую модель, так как даже она дает, по крайней мере качественно, правильные результаты. А это может иметь большее практическое значение, чем количественные результаты. Мой опыт доказывает, что самая грубая математическая модель помогает лучше понять практическую ситуацию, так как при создании математической модели мы стремимся учесть все логические возможности, однозначно определить все понятия и различить важные и второстепенные факторы.
Гиерон. Даже если математическая модель приводит к результатам, отличным от действительности, она может быть полезна, так как недостатки одной модели могут быть учтены при создании другой, лучшей модели. Мне кажется, прикладная математика похожа на войну; иногда поражение ценнее победы, так как помогает найти недостатки нашего оружия или стратегии.
Архимед. Теперь ты действительно постиг существо проблемы.
Гиерон. Расскажи мне что-нибудь еще о своих зеркалах.
Архимед. Я уже изложил тебе основную идею. После того как я пришел к мысли использовать упомянутые свойства параболы, нужно было разрешить проблемы обработки и полировки металлического зеркала в форме вогнутого параболоида вращения, однако я предпочел бы не говорить об этом. Конечно, я также должен был выбрать подходящий сплав.
Гиерон. Даже не вникая в твои секреты, я понял, что, кроме свойств параболы, ты должен многое знать о металлах и об искусстве их обработки. Выходит, что знаний математики недостаточно, если кто-то хочет применять их на деле. Не похож ли человек, желающий применять математику, на человека, пытающегося ехать верхом на двух лошадях одновременно?
Архимед. Я немного тебя поправлю: тот, кто намерен применять математику, похож на человека, который хочет запрячь двух лошадей в одну повозку: И это не так уж трудно сделать. Конечно, при этом необходимы некоторые познания как о лошадях, так и о колесницах, но каждый из твоих возничих обладает подобными знаниями.
Гиерон. Теперь я совершенно запутался: я все время считал, что прикладная математика — это какое-то таинство, а ты показал, что в действительности все очень просто. Но когда я убедился, что это на самом деле просто, ты показал мне, что все гораздо сложнее, чем я себе представлял.
Архимед. Принципы очевидны, но детали иногда бывают очень запутаны.
Гиерон. Я все еще не понимаю, что ты подразумеваешь под математической моделью. Расскажи мне об этом подробнее.
Архимед. Помнишь ли ты сферу, которую я построил несколько лет назад для демонстрации движения Солнца, Луны и пяти планет, с помошыо которой можно показать, как происходят затмения Солнца и Луны?
Гиерон. Конечно, ведь это одна из диковин в моем дворце, которую я показываю всем гостям; каждый думает, что это нечто удивительное. Может быть, это математическая модель Вселенной?