Архимед. Я считаю, что сам по себе метод гораздо важнее, чем любые частные результаты, которые я получил с его помощью. Ты помнишь, я однажды сказал о рычагах: «Дайте мне точку опоры — и я сдвину земной шар»? Конечно, на Земле нет такой точки. Однако в математике имеется точка, на которую можно опереться, — это аксиомы и логика.
Гиерон. Ты все время говоришь о прикладной математике, но примеры, которые ты даешь, относятся к геометрии. Как можно применять геометрию, я теперь вижу. Например, функционирование машины зависит от формы и размеров ее деталей. Путь камня, брошенного твоей катапультой, есть кривая, ты сказал, близкая к параболе. Но как обстоит дело с другими ветвями математики, скажем теорией чисел? Мне даже трудно себе представить, что она может иметь какую-нибудь практическую ценность. Конечно, я не говорю об элементах арифметики, которые используются в любых вычислениях. Я имею в виду понятия делимости, простых чисел, наименьшего кратного и другие, подобные им.
Архимед. Если ты соединяешь два зубчатых колеса с разным количеством зубьев, то с наименьшим кратным сталкиваешься неизбежно. Тебе достаточно этого простого примера? Недавно я получил письмо от моего друга Эратосфена Корейского, в котором он пишет о простом, но остроумном методе (он называет его методом решета) для нахождения простых чисел. Думая о его методе, я сделал эскиз машины, которая реализует его идею. Эта машина работает с набором зубчатых колес. Ты поворачиваешь ручку несколько раз, скажем п.., смотришь в отверстие и видишь просвет, значит, п — простое число; если же просвет закрыт, п — число, не являющееся простым.
Гиерон. Это в самом деле забавно. Когда кончится война, ты должен построить такую машину. Моим гостям она понравится.
Архимед. Обязательно сделаю ее, если буду жив. Это покажет, что машины могут решать математические проблемы. Надеюсь, математики наконец-то поймут, что даже с их собственной точки зрения они могут кое-что выиграть, изучая взаимосвязь математики и машин.
Гиерон. Говоря о выигрышах, я вспоминаю историю о Евклиде. Один из учеников, изучавший геометрию, спросил его: «Что я выиграю от изучения этих вещей?» Евклид позвал своего раба и сказал: «Дай ему монету, так как он хочет иметь доход от того, что изучает». Мне кажется, Евклид думал, что математикам не обязательно заботиться о практическом использовании их результатов.
Архимед. Я, конечно, слышал этот анекдот, но ты удивиться, если узнаешь, что я полностью согласен с Евклидом. На его месте я бы сказал что-нибудь в этом же роде.
Гиерон. Ты опять сбил меня с толку. До сих пор ты восторженно говорил о применениях математики, а теперь соглашаешься с теми, кто думает, что единственная награда, которой ученый должен добиваться, — наслаждение от познания.
Архимед. Ты да и большинство других неправильно понимаете историю о Евклиде. Не думай, что он не интересовался практическими следствиями из математических результатов и считал, что они недостойны философа. Это полная бессмыслица. Он написал, ты, конечно, знаешь, книгу об астрономии под названием «Явления» и книгу об оптике; я уверен, что он также автор книги «Катоптрика»— ее я использовал при конструировании моих зажигательных зеркал. Он также интересовался механикой. Как я понимаю, Евклид хотел подчеркнуть тот замечательный факт, что математика награждает только тех, кто интересуется ею не столько из-за наград, сколько ради нее самой. Математика похожа на твою дочь Елену, которая всякий раз подозревает поклонника, что он интересуется ею только потому, что хочет стать зятем царя. Она хочет такого мужа, который любил бы ее за красоту, ум, обаяние, а не за силу и власть, которую он сможет получить, женившись на ней. Математика также открывает свои тайны только тому, кто приближается к ней с чистой любовью, ради ее собственной красоты. И те, кто делает так, вознаграждаются результатами практической важности. Но если спрашивать себя на каждом шагу: «Какая польза от этого?», то невозможно достичь многого. Ты помнишь, я сказал тебе, что римляне никогда не смогут добиться успеха в прикладной математике. Теперь ты видишь, почему: они слишком практичны.
Гиерон. Я думаю, что мы должны были учиться у римлян, тогда нам было бы легче воевать с ними.
Архимед. Я не согласен с тобой. Если мы попытаемся одержать победу, отказавшись от собственных идей, лишь подражая нашим противникам, то мы проиграем уже до начала сражения. Даже если бы мы выиграли войну таким путем, это не было бы настоящей победой. Такая победа хуже поражения.
Гиерон. Не станем говорить о войне и вернемся к математике. Расскажи, как ты конструируешь свои математические модели?