Галилей. Очень просто. Нарисуйте прямую линию. Выберите точку Р0 на этой линии, которая будет соответствовать моменту начала движения. Тогда точка Pt на той же линии, лежащая справа от точки Р0, соответствует времени t с начала движения. В точке Pt проведем перпендикуляр к линии P0Pt и выберем на нем такую точку Qt, расстояние от которой до Pt равно скорости падающего тела в момент t. Так как скорость пропорциональна времени, то точка Qt будет лежать на прямой, начинающейся в точке Р0.
Движение с постоянной скоростью. Движение с кусочно-постоянной скоростью.Движение с равномерно изменяющейся скоростью.Синьора Никколини. Но как можно на этой фигуре найти полное пройденное расстояние?
Галилей. Очень просто — расстояние, пройденное вплоть до момента t, равно площади треугольника I'0PtQt.
Синьора Никколини. Почему?
Галилей. При постоянной скорости расстояние равно произведению скорости на время. Пройденное расстояние равно площади прямоугольника, одна сторона которого изображает время, а вторая скорость. Если скорость изменяется, ситуация становится более сложной, но расстояние все так же равно площади. Например, если сначала скорость постоянна, а потом сразу увеличивается до какой-то величины, то путь равен площади фигуры, состоящей из двух прямоугольников. Если скорость изменяется несколько раз, но между двумя последовательными изменениями остается постоянной, то путь равен площади фигуры, состоящей из нескольких прямоугольников. Если скорость, начинающаяся с нуля, изменяется непрерывно и равномерно, то путь равен площади треугольника. Чтобы понять это, вы должны рассмотреть треугольник, как бы состоящий из бесконечного числа бесконечно тонких прямоугольников разной высоты.
Синьора Никколини. Удивительно. Этот вопрос рассматривается в вашей книге по математической теории движения?
Галилей. Да, и множество других. Подобно тому как можно вычислить, где будет падающий камень через две или три секунды после начала падения, можно показать, что траектория камня, брошенного в любом направлении, — парабола. Этот вопрос интересен не только в практическом смысле, но также и тем, что благодаря ему я могу показать, как следует комбинировать различные движения. И я никак не пойму, почему никто, кроме, возможно, Архимеда, тщательно не исследовал, что случается, когда роняют или бросают камень. Ведь еще Птолемей пытался подсчитать видимые орбиты Солнца, Луны и планет, наблюдения за которыми велись изо дня в день и из года в год. Более того, я утверждаю — даже если меня снова заподозрят в ереси, — что движение здесь, на Земле, подчиняется тем же законам, что и в небе.
Синьора Никколини. Итак, Вселенная похожа на большие часы, у которых можно точно подсчитать, как поворачиваются колеса — и самые маленькие, и самые большие.
Галилей. Эти удивительные закономерности составляют только одну главу книги природы! Но там также имеется много других закономерностей, непредсказуемых, случайных событий.
Синьора Никколини. Что вы имеете в виду?
Галилей. Представьте себе новые звезды, которые однажды, например 60 лет назад, вдруг появляются на небе. В течение нескольких лет они светят ярче и ярче, а затем вдруг исчезают так же неожиданно, как и появились. Вспомните о солнечных пятнах, которые вращаются вокруг Солнца вблизи его поверхности. Иногда они растут, иногда уменьшаются, появляются, кружатся и исчезают. Вселенная не похожа на механизм ни в каком отношении. Иногда она более походит на непостоянную, капризную женщину.
Синьора Никколини. Мне кажется, в книге природы некоторые главы должны быть написаны не математическим языком, потому что в них идет речь о событиях, которые нельзя предсказать.
Галилей. Вы ошибаетесь, синьора, но до сих пор были предприняты только первые шаги к математическому описанию случайностей, хотя сделать это возможно, как я уже показал совсем недавно на очень простом примере.
Синьора Никколини. На каком же?
Галилей. Игра в кости стара, но все еще популярна. Как упадет игральная кость, полностью зависит от случая. Если стороны игральной кости помечены числами 1, 2, 3, 4, 5, 6, то, бросая ее, мы можем с уверенностью сказать только то, что число, которое мы увидим, будет одним из этих шести. Но многократно бросая игральную кость, мы наблюдаем определенную закономерность — каждое из шести чисел будет появляться приблизительно одно и то же число раз. Но еще более интересно, если мы бросим две игральные кости одновременно и сложим числа, которые откроются. Чего тут можно ожидать?
Синьора Никколини. Совершенно ясно — сумма может быть любым числом от 2 до 12.