Читаем Диалоги о математике полностью

Галилей. Да, но эти 11 возможностей случаются не одинаково часто. Чаще всего будет получаться число 7, около одной шестой от всех бросков, затем 6 и 8 — каждое будет получаться около пяти тридцать шестых от всех бросков; 5 и 9 будут составлять одну девятую от всех бросков, 4 и 9 — одну двенадцатую часть, а 3 и 11 — одну восемнадцатую. Наконец, суммы 2 и 12 составляют одну тридцать шестую от всех бросков.

Синьора Никколини. Странно. Почему так получается?

2=1+1

3=1+2=2+1

4=1+3=2+2=3+1

5=1+4=2+3=3+2=4+1

6=1+5=2+4=3+3=4+2=5+1

7=1+6=2+5=3+4=4+3=5+2=6+1

8=2+6=3+5=4+4=5+3=6+2

9=3+6=4+5=5+4=6+3

10=4+6=5+5=6+4

11=5+6–6+5

12=6+6

Галилей. Причина очень проста. Мы можем получить в сумме четыре тремя путями, а именно как сумму трех и одного, например если первая игральная кость покажет три, а вторая один, или наоборот, а также как сумму двух и двух. Но сумму двенадцать мы можем получить только тогда, когда обе игральные кости показывают шесть. Поэтому четыре будет получаться в три раза чаще, чем двенадцать.

Синьора Никколини. Когда-нибудь я попытаюсь сыграть в кости по вашему правилу. Вы полагаете, что, зная все это, можно выиграть много денег?

Галилей. Игра остается игрой, если правила установлены так, что ни один игрок не может оказаться в более благоприятной ситуации, чем другие. Но, когда правила установлены неверно, можно выиграть много, если есть деньги, чтобы играть до тех пор, пока законы случая не станут тебе благоприятствовать.

Синьора Никколини. Никогда не думала, что математика — основа даже для игры в кости. Как называется эта отрасль математики?

Галилей. Она так молода, что у нее нет имени. Ее можно было бы назвать исчислением вероятностей.

Синьора Никколини. Почему я об этом еще не слышала?

Галилей. Математики привыкли заниматься тем, что закономерно и точно, и до сих пор избегали случайностей; казалось, это не их область. Авторитет Аристотеля поддерживал направление, согласно которому математика должна иметь дело с чем-то неизменяемым. А что более причудливо изменяется, чем случай? Но есть еще и другие, более старые предрассудки. Это старинный обычай видеть в случайных событиях — в бросании игральной кости, полете птиц, неправильной форме печени жертвенного животного — проявление божественной воли. И все это было причиной священного испуга на лицах людей при встречах со случайными событиями. Большинство из них считали почти богохульством пытаться объяснить такие события при помощи человеческого разума. Однако моя точка зрения — человек имеет разум, чтобы использовать его.

Синьора Никколини. Мне нравится способность математики — хотя я знаю только то, что слышала от вас, — делать самые сложные вещи простыми; при свете факела математической истины многие вещи, которые были трудны и непонятны, становятся ясными и простыми.

Галилей. Это верно. Но я должен сказать, что иногда математика обнаруживает, что вещи, кажущиеся простыми, на самом деле очень сложны.

Синьора Никколини. Что вы имеете в виду, учитель?

Галилей. Я приведу вам только один очень простой пример. Напишем на этом листе целые числа от нуля и далее: 0, 1, 2, 3…. Представим, что ряд продолжается до бесконечности. Теперь отметим среди них квадраты чисел. Вы видите, что по мере продвижения слева направо мы встречаем все меньше квадратов, потому что расстояния между ними становятся все больше.

Синьора Никколини. В самом деле, расстояния— нечетные числа: 1, 3, 5, 7, 9….

Галилей. Похоже на расстояния, которые проходит падающий камень. Но скажите, прав ли я, утверждая, что квадратов в этом ряду меньше, чем чисел вообще?

Синьора Никколини. Конечно.

Гал ил ей. Тогда напишем снова ряд целых чисел и под каждым — его квадрат. Во второй строке только квадраты целых чисел, не так ли, и каждый встречается лишь однажды?

Синьора Никколини. Да.

Галилей. Числа стоят друг под другом, и потому в нижней строке столько же чисел, сколько в верхней. Вы все еще утверждаете, что квадратов чисел меньше, чем чисел вообще?

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16. .

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256..

Синьора Никколини. Этот пример окончательно сбил меня с толку. В чем здесь дело?

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес