Читаем Диалоги о математике полностью

Роль математики в развитии других наук и в практических областях деятельности человека невозможно установить на все времена. Изменяются не только те вопросы, которые требуют скорейшего разрешения, но и характер решаемых задач. Ленинский тезис об отсутствии абсолютного знания, о постепенном приближении наших сведений о природе к истинным закономерностям, господствующим в ней, относится и к математическому знанию. Создавая математическую модель реального процесса, мы неизбежно упрощаем его и изучаем лишь приближенную его схему. По мере уточнения наших знаний и выяснения роли ранее не учтенных факторов удается сделать более полным математическое описание процесса. Процедуру уточнения нельзя ограничить, как нельзя ограничить развитие самого знания. Математизация науки состоит не в том, чтобы исключить из процесса познания наблюдение и эксперимент. Они являются непременными составными частями полноценного изучения явлений окружающего нас мира. Смысл математизации знаний состоит в том, чтобы из точно сформулированных исходных предпосылок выводить следствия, доступные непосредственному наблюдению; с помощью математического аппарата не только описывать установленные факты, но и предсказывать новые закономерности, прогнозировать течение явлений, а тем самым получать возможность управления ими. Если эти предсказания оправдываются, теория укрепляет свое положение и продолжает дальнейшие выводы. Но рано или поздно, поскольку математическая теория того или иного реального явления всегда приближенна, обязательно наступает момент, когда какое-то следствие теории не подтверждается экспериментом или какой-то новый факт не объясняется теорией. Значит, математическая теория оказалась недостаточной. Необходим пересмотр исходных предпосылок теории, изменение положений, которые раньше казались незыблемыми. Такой пересмотр приводит к новой теории, способной шире и глубже проникнуть в структуру изучаемых явлений.

Математизация наших знаний состоит не только и не столько в том, чтобы использовать готовые математические методы и результаты, а в том, чтобы начать поиски того специфического математического аппарата, который позволил бы наиболее полно описывать интересующий нас круг явлений, выводить из этого описания новые следствия, чтобы уверенно использовать особенности этих явлений на практике. Так случилось в период, когда изучение движения стало насущной необходимостью, а Ньютон и Лейбниц завершили создание начал математического анализа. Этот математический аппарат до сих пор является одним из основных орудий прикладной математики. В наши дни разработка теории управления процессами привела к ряду выдающихся математических исследований, в которых заложены основы оптимального управления детерминированными и случайными процессами.

Двадцатый век резко изменил представления о прикладной математике. Если раньше в арсенал средств прикладной математики входили арифметика и элементы геометрии, то восемнадцатый и девятнадцатый века добавили к ним мощные методы математического анализа. В наше время трудно указать хотя бы одну значительную ветвь современной математики, которая в той или иной мере не находила бы применений в великом океане прикладных проблем. По-видимому, разделение математики на прикладную и теоретическую потеряло смысл. Вероятно, не математика, а математики разделяются по своим интересам и творческой направленности на прикладников и теоретиков. Одни считают своей основной задачей преодоление трудностей, связанных с решением задач, которые не поддавались усилиям прежних поколений. Эти задачи интересуют их сами по себе, вне сйязи не только с прикладными вопросами, но и прогрессом математики в целом. Других волнует построение математики в ее основах. Они стремятся так отшлифовать центральные понятия математики, чтобы охватить ими возможно более широкий круг задач. Наконец, есть математики, для которых математика и ее методы существуют не ради самих себя, а в качестве орудия познания законов природы. Конкретная практическая задача для них — лишь источник размышлений; решая ее, они разрабатывают общие приемы, позволяющие освещать широкий круг различных вопросов. Такой подход особенно важен для прогресса науки. От этого выигрывает не только данная область приложений, но и все остальные, а в первую очередь — сама теоретическая математика. Именно такой подход к математике заставляет искать новые методы, новые понятия, способные охватить новый круг проблем, он расширяет область математических исследований. Последние десятилетия дают нам множество примеров подобного рода. Чтобы убедиться в этом, достаточно вспомнить появление в математике таких теперь центральных ее ветвей, как теория случайных процессов, теория информации, теория оптимального управления процессами, теория массового обслуживания, ряд областей, связанных с электронными вычислительными машинами.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес