Однако
Увы, для самого человека это будет смертельно.
Устройство Кена «пластинирует» участок мозга, заменяя кровь полимером, который придает жесткость окружающей ткани. Затем отвердевшая мозговая ткань нарезается на куски толщиной примерно в 20 нанометров – что в 100 000 раз тоньше, чем человеческий волос, – после чего эти срезы сканирует электронный микроскоп. На сегодняшний день это единственный способ картировать мозг в необходимом разрешении – в масштабе нанометров. Понятное дело, что после такой процедуры в физическом мире остается не мозг, а затвердевшая мозговая ткань, нарезанная на миллиады тончайших ломтиков.
Словом, чтобы «загрузить» свое сознание, человеку придется умереть. Для кого-то это не проблема: например, для умирающих или уже умерших людей, мозг которых успели вовремя законсервировать, чтобы предотвратить разрушение его структур.
В любом случае загруженное сознание – по сути, компьютерная программа – продолжает существовать, помнить и чувствовать. В отличие от биологического мозга его можно скопировать, ускорить – по мере того, как вычислительная мощность компьютеров будет расти, – создать его резервную копию и т. д. Бессмертие уже практически у нас в руках – а с ним жизнь, состоящая из бесконечных обновлений.
При условии, конечно, что модель окажется работоспособной.
Насколько точной и детализированной должна быть модель мозга, чтобы в ней могло полноценно функционировать здоровое сознание? Ответа на этот вопрос мы пока не знаем. Можно только строить догадки. Но как бы глубоко мы ни заходили в наших догадках, всегда обнаруживаются новые нюансы, новый уровень непознанного – возможно, критически важный для построения функционирующей модели головного мозга.
Например, в модели IBM Blue Brain используются нейроны, которые реагируют на поступающие сигналы и генерируют собственный импульс – прямо как настоящие. Но этим цифровым нейронам не достает многих физических характеристик «живых», биологических нейронов. У них нет настоящих рецепторов, которые взаимодействуют с нейромедиаторами (серотонином, дофамином, опиатами и другими упомянутыми в книге). Быть может, такая точность модели и ни к чему. Но задумайтесь: действие всех лекарственных и наркотических веществ, начиная от болеутоляющих и заканчивая тяжелыми наркотиками, основано именно на взаимодействии этих веществ с рецепторами. Сможет ли ваше загруженное сознание принять антидепрессант? Опьянеть от виртуального бокала вина? Взбодриться от виртуального кофеина? Если нет, это ли не повод задуматься?
А вот еще одна причина считать, что биологические нейроны намного сложнее, чем может показаться на первый взгляд. Нейроны IBM Blue Brain относительно просты в плане своих математических функций. Они принимают и генерируют импульсы. Но амеба, одноклеточный организм, который меньше и проще человеческого нейрона, умеет гораздо больше. Амебы охотятся. Амебы запоминают места, где раньше находили пищу. Амебы могут выбирать направление движения. Все это позволяет предположить, что амебы обрабатывают куда
Если одноклеточный микроорганизм на деле оказывается сложнее искусственных нейронов, возможно, с этими искусственными нейронами что-то не так?
Наконец, расскажу о трех недавних исследованиях в области работы мозга (ни одно из них не было учтено при разработке нынешних моделей).
В мозге, помимо нейронов, есть глиальные клетки, причем их гораздо больше. Принято считать, что они выполняют поддерживающую функцию, помогая нейронам работать. Недавние исследования доказали, что этим роль нейроглии не ограничивается и она тоже оказывает влияние на процессы мышления, но в модели Blue Brain это никак не учтено. Второе новейшее исследование показало, что нейроны мозга коммуницируют не только посредством синаптических связей. В результате наложения электрических полей электрическая активность одного нейрона может привести к изменению импульсной активности соседнего нейрона – без освобождения нейромедиаторов. Эта особенность также не учтена в модели Blue Brain. И, наконец, третье: суммарная электрическая активность мозга может отражаться на характере импульсной активности отдельных нейронов за счет изменения электрического поля мозга. И это тоже никак не учтено в моделях, существующих на сегодняшний день.