Читаем Дирижабли на войне полностью

Объем и размеры LZ-127 определялись как предельные, имея в виду возможность более полного использования единственного оставшегося в Германии эллинга в Фридрихсхафене: расстояние между боковыми стенами строения и находящимся в нем дирижаблем составляли всего около 1 м, а расстояние от верхней точки дирижабля до потолка эллинга — лишь 65 см. Можно только поражаться, как при столь «тесном» для данного дирижабля эллинге не произошло ни одной аварии при вводе и выводе из него воздушного корабля.

Основные характеристики LZ-127: длина — 236,6 м; миделъ 30,5 м и высота, считая от амортизатора гондолы, 33,5 м. Объем дирижабля 105 000 куб. м, из них под несущий газ 75 000 куб. м, остальные 30 000 куб. м предназначались для хранения горючего газа, на котором работали моторы воздушного корабля.

На дирижабле были установлены 5 моторов «Майбах», типа «VL-2», мощностью по 530 л. с. каждый. Скорость дирижабля: максимальная при полной мощности моторов 128 км/ч, крейсерская 117 км/ч. Имея на борту полезную нагрузку, состоящую из 20 пассажиров с багажом и провиантом и 15 000 кг почты и прочих грузов, дирижабль мог пролететь без посадки 10 000 км, при уменьшении полезной нагрузки расстояние могло быть увеличено до 14 000 км. Собственный вес дирижабля составлял 55 000 кг. Команда насчитывала 26 человек.

Форма корпуса LZ-127 не является наилучшей изо всех возможных в аэродинамическом отношении. Однако имея в виду, что конструкторам дирижабля пришлось исходить из размеров эллинга и потому построить дирижабль со сравнительно большим удлинением было невозможно, следует признать — эта форма все же оказалась очень удачной. По сравнению с предыдущими дирижаблями, в частности с LZ-126, в конструкцию «Графа Цеппелина» были введены некоторые усовершенствования, сводящиеся главным образом к следующему: 1) применение в качестве горючего для моторов особого газа, в связи с чем потребовалось несколько иное, чем раньше, расположение внутри каркаса газовых мешков; 2) устройство внутри каркаса, помимо имевшегося и у прежних дирижаблей нижнего коридора и еще второго коридора, расположенного несколько ниже продольной оси корабля и тянущегося от носа до его кормы.

Одно из основных отличий дирижабля LZ-127 от построенных ранее цеппелинов заключалось, как уже говорилось, в том, что LZ-127 имел не один нижний коридор, а два. Назначение нижнего коридора оставалось тем же, что и в прежних дирижаблях. Он должен был воспринимать на себя вес гондол и все другие нагрузки, передавая их на главные шпангоуты. Кроме того, нижний коридор служил ходом сообщения между всеми гондолами и вообще вдоль всего дирижабля. Наличие верхнего коридора, помимо увеличения прочности дирижабля, преследовало еще и задачу разграничения размещавшихся над коридором баллонов с подъемным газом от находившихся под верхним коридором камер, которые содержали газ для питания моторов. Спальные каюты для команды находились по обеим сторонам коридора вблизи от места работы тех или иных членов команды: например, каюты для мотористов располагались посредине.

Вся внутренняя часть каркаса делилась главными шпангоутами на 17 отсеков, в каждом из которых находился 1 газовый баллон. Почти все баллоны занимали в каркасе пространство только от его верхней части до горизонтальной плоскости, проведенной вдоль верхнего коридора. В нижней же части каркаса находился топливный газ. На рисунке показано поперечное сечение дирижабля в плоскости одного из главных шпангоутов и видно, как распределялось внутреннее пространство каркаса между баллонами для подъемного газа и мешками для топливного газа.

У LZ-127 было 5 моторных, гондол, причем 4 подвешивались по обеим сторонам дирижабля, а пятая, кормовая, находилась сзади, непосредственно под килем дирижабля. Все моторные гондолы имели удобообтекаемую форму и состояли из дюралюминиевого каркаса, обшитого снизу дюралюминиевыми листами, а сверху — специальной тканью.

Моторные гондолы крепились к корпусу дирижабля при помощи тросов и стоек, распорок и подкосов. Около каждой в оболочке имелся люк, к которому приставлялась лестница, ведущая в моторную гондолу.

Назначение подкосов между задней моторной гондолой и каркасом частично заключалось в том, чтобы в случае возможного сильного удара первой о землю служить в качестве амортизатора для каркаса дирижабля. Подкосы были рассчитаны таким образом, чтобы при аварии они ломались в первую очередь. Так как боковые гондолы подвешивались сравнительно высоко и не касались земли при возможных наклонах дирижабля во время спуска, амортизаторов они не имели. Амортизатор задней моторной гондолы такого же типа, как и гондолы управления, но несколько меньше по своим размерам.

Перейти на страницу:

Все книги серии Профессионал

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники