Эйлер хотел найти простые числа больших размеров. Многие математики до него ошибочно предполагали, что все числа Мр вида Мр = 2р - 1, где Р — простое число, простые. Пьетро Катальди (1548-1626) в 1588 году доказал, что M17 и М19 простые, при помощи немного устаревшего, но стандартного для того времени метода, состоявшего в том, чтобы попытаться разделить их на простые числа, меньшие их квадратного корня. Впоследствии Марен Мерсенн, в честь которого эти числа обозначаются буквой М, составил целый список предполагавмых простых чисел, оказавшийся неточным, так как М67 и М257 повторялись два раза, а M61, M89 и M107 в нем не было. Сегодня самым большим числом является M43112609, в котором 12978189 цифр, в полном виде оно займет 50 таких книг, как эта.
В 1772 году Эйлер доказал, что число M31 простое. Любопытно, что прошло более 100 лет, прежде чем было найдено следующее простое число — M127. Сделал это французский математик Эдуард Люка (1842-1891) в 1876 году. Также простыми являются M61 и M89, но они были открыты позже. Таким образом, на протяжении 104 лет Эйлеру принадлежал рекорд по открытию самого большого простого числа.
Квадратичный закон взаимности, превосходно сформулированный Гауссом в его Disquisitiones arithmeticae ("Арифметические исследования"), появился у Лежандра и Эйлера, который рассказал о нем Гольдбаху в письме 1742 года. Для начала определим, что такое символы Лежандра (p/q).
Предположим, что p и q — разные простые нечетные числа и
(p/q) =
0, если р 0 (mod q)
1, если х2 р (mod q) разрешимое уравнение
-1, если х2 p (mod q) неразрешимое уравнение.
Таким образом, Гауссу, а не Эйлеру, удалось доказать, что
(p/q) =
(q/p), если q 1 (mod 4)
(-q/p), если q 3 (mod 4)
Это можно выразить, хотя это и непросто, в одной формуле. Гаусс сделал это открытие в 19 лет и так гордился им, что назвал его aurum theorema — "золотой теоремой".