Предположим, что решением является f0 и что функционал имеет здесь минимум; назовем (x) функцию (которую мы будем "варьировать"), равную нулю в экстремумах x1, х2. Поскольку в f0 функционал имеет минимум,
S(f0)=S(f0+)
в окрестности f0. Вариационный размах
f = f0 +
должен удовлетворять:
dS(f0 + )/d|=0 = x1x2dL/d|=0 = 0
Теперь вспомним, что
df/d = ,df'/d = '.
Применим правило дифференцирования и проведем необходимые замены.
Получим
dL/d = L/f df/d + L/f' df'/d = (L/f) + L/f''
A теперь проинтегрируем по частям и учтем предыдущую формулу:
dL/df = d/dx L/df' = 0
Таким образом, мы получили уравнения Эйлера — Лагранжа, которые в приложениях обычно приводят к дифференциальным уравнениям второго порядка.
5. КОМПЛЕКСНЫЕ ЧИСЛА
Эйлер вывел свою фундаментальную формулу, из которой впоследствии получил еще несколько из простых рядов Тейлора. Напомним, что степени ведут себя так:
i0 = 1,i1 = i,i2 = -1,i3 = -i,
i4 - 1, i5 = i, i6 = 1,i7 = i и так далее.
Напомним также, что ряды степеней е и тригонометрических функций синус и косинус раскладываются в ряд Тейлора или степенной ряд следующим образом:
ex = x0/0! + x1/1! + x2/2! + x3/3! + x4/4! + ...
cosx = x0/0! + x2/1! + x4/4! + x6/6! + ...
sinx = x1/1! + x3/3! + x5/5! + x7/7! + ...
Произведем вычисления:
eix = (iz)0/0! + (iz)1/1! + (iz)3/3! + (iz)4/4! + (iz)5/5! + (iz)6/6! + (iz)7/7! + (iz)8/8! + ... = z0/0! + i(z1/1!) + z2/2! + i(z3/3!) + z4/4! + i(z5/5!) + z6/6! + i(z7/7!) + z8/8! + ... = (z0/0! + z2/2! + z4/4! + z6/6! + z8/8! + ...) + i(z1/1! + z3/3! + z4/4! + z6/6! + z8/8! + ...).
Пусть М — сообщение, а С — зашифрованное сообщение (или криптограмма). Предположим, что оба они — натуральные числа. Обозначим через f функцию, которая преобразует М в С: f(M) = С. Чтобы зашифровать М, выбирают два очень больших простых числа, р и q, и определяют модуль, который мы назовем n, так что n = pq и n М. Выберем такое е, что 1 е (n), а е и (n) взаимно простые числа. Открытый ключ состоит из n и е, и он всем известен. Поскольку n — очень большое число, узнать значение р и q невозможно. Мы имеем E = f(M) Me (mod n). Назовем закрытым ключом пару n, d, где d выбрано так, что de 1 (mod (n)). Поскольку и q — простые числа, a pq = n, получим, что (n) = (р - 1)(q - 1); если мы не знаем p и q, а узнать их фактически невозможно, то мы не можем узнать и (n). Следовательно, мы не можем узнать d. Но у получателя есть значение d, следовательно, он знает р и q и может перейти к расшифровке сообщения: Ed (Me)d (mod n) Мed (mod n) MN(n)+1 (mod n), N € . Теперь применим малую теорему Ферма. Если а = MN (a и n почти стопроцентно взаимно простые), то, применяя теорему, мы получаем: Ed Ма(n) (mod n) M (mod n) = M, поскольку М n, как мы договорились в начале.
Из этого объяснения видно, что создать ключ расшифровки довольно легко, поскольку нужны всего два больших простых числа, р и q, а разложить его, напротив, очень трудно.
Список рекомендуемой литературы
Bell, Е.Т., Los grandes matemdticos, Buenos Aires, Losada, 2010.
Boyer, C., Historia de la matematica, Madrid, Alianza Editorial, 2007.
Bradley, R., et Sandifer, E. (editores), Leonhard Euler: life, work and legacy, Amsterdam, Elsevier B.V., 2007.
Dunham, W., Euler, el maestro de todos nosotros, Madrid, Nivola,
2000.
Galindo, A. et al., La obra de Euler: tricentenario del nacimiento de Leonhard Euler (1707-1783), Madrid, Instituto de Espana, 2009.
Stewart, I., Historia de las matemdticos, Madrid, Critica, 2008.
Vargas, G., Calzada, G., Euler, el matemdtico, Madrid, El rompeca- bezas, 2011.
Ars conjectandi 125
Dioptricae 141
Institutiones calculi differentialis 8, 3, 103, 107
Institutiones calculi integralis 8, 13, 103, 107
Introductio in analysin infinitorum 8, 13, 28, 31, 34, 51, 103, 104, 106
Principes g'en'eraux du mouvement des fl uides 97
RSA 129
Solutio facilis problematum
quorundam geometricorum diffi cillimorum 91
Vollst`andige anleitung zur algebra 141
алгоритм 64, 120, 138
Апери постоянная 65
Араго, Франсуа 39, 103
барицентр 92
Берлинская академия наук 9, 13, 24, 72, 77, 78, 91, 114, 116
Бернулли
Даниил 24, 37-39, 60, 65, 141
Иоганн 9, 13, 18-24, 61
Николай 24, 84
Якоб 9, 18, 19, 20-24, 48-50, 55, 124
брахистохрона 20-22
Бугер, Пьер 22, 25
Бэббидж, Чарльз 64, 65
Вейерштрасс, Карл 41, 56
Венн, диаграммы 101
Вольтер 39, 75-78
Гаусс, Карл Фридрих 19, 29, 91, 101, 103, 105, 127, 131-133
Герои Александрийский 87
Гзель, Катерина 13, 38, 60, 117
гидродинамика 7, 19, 24, 98
Гольдбах, Кристиан 11, 13, 24, 28, 37-39, 44-46, 50, 62, 82-85, 95, 110, 117, 131
проблема 11, 13, 82-85
граф 67-69
Гюйгенс, Христиан 48, 49, 102
Д’Аламбер, Жан Батист Лерон 71, 77, 78, 90, 91, 99
Декарт 13, 18, 22, 71, 79, 103, 130, 133
Дидона, задача 87
Дидро, Дени 90, 115
диск Эйлера 11, 140