Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре подхода к математике, которые отчётливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, то есть, старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.
В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить, что проводимые им математические доказательства, по крайней мере, согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он, среди прочих важных и значительных результатов, доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать её непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматический дедуктивный метод, столь высоко ценимый в прошлом как надёжный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось, и математики разбились на ещё большее число группировок.
В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них, по ряду причин, не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин – величественной математике начала XIX в., гордости человека – не более чем заблуждение. На смену уверенности и благодушию, царившему в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой «незыблемой» из наук вызвали удивления и разочарование (чтобы не сказать больше). Нынешнее состояние математики – не более чем жалкая пародия на математику прошлого с её глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства.
Как думают некоторые математики, расхождения во мнениях относительно того, что следует считать настоящей математикой, когда-нибудь будут преодолены. Особое место среди тех, кто так считает, занимает группа ведущих французских математиков, пишущих под коллективным псевдонимом Никола Бурбаки8
:Но гораздо больше математиков настроено пессимистически. Один из величайших математиков XX в. Герман Вейль сказал в 1944 г.:
Говоря словами Гёте,