Неверные представления о шансах. Люди ожидают, что последовательность событий, генерируемых случайным процессом, является существенной характеристикой процесса, даже если последовательность коротка. Например, бросая монету (орел или решка), человек рассматривает итоговую последовательность О-Р-О-Р-Р-О как более вероятную, чем последовательность О-О-О-Р-Р-Р, которая выпадает редко, а также более вероятной, чем последовательность О-О-О-О-Р-О, которая не отражает равновероятность исходов при подбрасывании монеты [7]. Таким образом, люди ожидают, что существенные характеристики процесса будут представлены не только глобально в полной последовательности, но и локально в каждой ее части. На самом же деле локально репрезентативная последовательность систематически отклоняется от ожидаемых вероятностей: в ней слишком много чередований и слишком мало повторений. Еще одно следствие веры в локальную репрезентативность – хорошо известная ошибка игрока. К примеру, заметив длинную последовательность выпадения красного на рулетке, большинство людей считают, что настала очередь чер ного, поскольку выпадение черного даст более репрезентативную последовательность, чем еще одно появление красного. Шанс часто рассматривается как саморегулирующийся процесс, в котором отклонение в одну сторону вызывает отклонение в противоположную сторону – для поддержания равновесия. На самом деле отклонения не «корректируются» по мере развития процесса; они просто сглаживаются.
Неверные представления о шансах – удел не только неискушенных людей. Проведенные исследования статистической интуиции опытных исследователей-психологов [8] выявили упорное заблуждение, которое можно назвать «закон малых чисел», – согласно ему даже маленькие выборки высоко репрезентативны для своих популяций. Ответы исследователей отражают ожидание того, что валидная гипотеза о популяции даст статистически значимые результаты в выборке любого размера. Как выяснилось, исследователи слишком доверяли результатам по маленьким выборкам и сильно переоценивали воспроизводимость таких результатов. В условиях реального исследования подобные искажения ведут к выборкам неадекватного размера и чересчур смелой интерпретации результатов.
Игнорирование предсказуемости. Людям иногда приходится делать численные прогнозы – например, предсказывать будущий курс акций, спрос на товар или результат футбольного матча. Эти прогнозы часто делаются на основе репрезентативности. Например, представьте, что кому-то предлагают описание компании и просят дать прогноз будущей прибыли. Если описание компании очень благоприятное, высокие прибыли покажутся репрезентативными для этого описания; если описание среднее, наиболее репрезентативными сочтут средние показатели. На благоприятность описания не влияет степень его надежности или то, насколько оно позволяет делать точные прогнозы. Значит, если прогноз делают на основании только благоприятности описания, то предсказания игнорируют надежность доказательств и ожидаемую точность прогноза.
Такой способ выноси ть суждения идет вразрез со статистической теорией, в которой крайность и диапазон прогнозов сдерживаются соображениями предсказуемости. Когда предсказуемость равна нулю, во всех случаях должны быть даны одинаковые предсказания. Например, если в описании компаний нет информации, связанной с прибылями, тогда правильно будет дать одинаковый прогноз (например, среднюю прибыль) для всех компаний. Если предсказуемость идеальна, предсказанные величины, разумеется, совпадут с реальными, а диапазон прогнозов совпадет с диапазоном итогов. В общем, чем выше предсказуемость, тем шире диапазон предсказанных величин.
Некоторые исследования числовых прогнозов показали, что интуитивные предсказания нарушают это правило и что люди редко учитывают – или вовсе не учитывают – соображения предсказуемости [9]. В одном из исследований участникам предлагалось несколько абзацев, в каждом из которых описывались действия учителя-практиканта во время урока. Некоторых участников просили оценить (в процентилях) качество описанного в тексте урока относительно конкретной популяции. Других участников просили предсказать (тоже в процентильных баллах) успехи данного практиканта через пять лет после этого урока. Суждения, высказанные в данных условиях, оказались идентичны, то есть прогноз по отдаленному критерию (успешность учителя через пять лет) совпадал с оценкой информации, на которой основывался прогноз (качество описанного урока). Студенты, дававшие ответы, разумеется, знали, что предсказуемость преподавательской компетентности по одному-единственному уроку пятилетней давности ограничена; тем не менее их прогнозы были столь же радикальными, как и их оценки.