Чтобы пройти этот мини-тест Тьюринга, наш компьютер должен прийти к выводу: узник будет мертв в вымышленном мире тоже, потому что там его убил бы выстрел
Может показаться, что мы приложили массу усилий, стараясь ответить на ненастоящие вопросы, с которыми и так все было ясно. Я полностью согласен! Рассуждения о причинно-следственных связах даются вам без труда, потому что вы человек, и когда-то вам было три года, и у вас был замечательный трехлетний мозг, который понимал причинно-следственные связи лучше, чем любое животное или компьютер. Весь смысл мини-теста Тьюринга в том, чтобы рассуждения о причинности стали по силам и машинам. В ходе этого процесса мы могли узнать что-то новое о том, как это делают люди. Все три примера показывают, что компьютеры нужно научить выборочно нарушать правила логики. Компьютерам трудно это делать, а детям очень легко. (И пещерным людям тоже! Человекольва не создали бы, не нарушив правила о том, какая голова подходит для того или иного тела.)
Рис. 6. Контрфактивное рассуждение. Мы наблюдаем, что узник мертв и спрашиваем, что случилось бы, если бы солдат А решил не стрелять.
Но все же не будем почивать на лаврах, утверждаясь в человеческом превосходстве. В очень многих ситуациях людям, скорее всего, будет гораздо сложнее прийти к верным выводам о причинно-следственных связях. Так, может возникнуть гораздо больше переменных и они окажутся не просто бинарными (верно/неверно). Вместо того чтобы гадать, жив или мертв узник, нам, предположим, понадобится предсказать, насколько вырастит безработица, если поднять минимальную заработную плату. Такого рода количественное рассуждение о причинно-следственных связах обычно не под силу нашей интуиции. Кроме того, в примере с расстрельной командой мы исключили неопределенность: скажем, капитан дал команду через долю секунды после того, как солдат
Позвольте привести пример, в котором от вероятностей зависит все. Он отражает споры, разгоревшиеся в Европе, когда впервые появилась вакцина от оспы. Тогда статистические данные неожиданно показали, что от прививки умирает больше людей, чем от самой болезни. Естественно, некоторые люди использовали эту информацию как аргумент в пользу запрета прививок, тогда как на деле она спасала жизни, избавляя от риска заболеть. Давайте рассмотрим вымышленные данные, чтобы проиллюстрировать этот эффект и разрешить спор.
Представим, что из миллиона детей 99 % получает прививку, а 1 % — нет. Если ребенок привит, то у него или у нее есть один шанс из 100 на побочную реакцию, и в одном случае из 100 реакция может стать смертельной. В то же время, если ребенок не прививается, у него или у нее очевидно нет риска получить побочную реакцию на прививку, однако есть один шанс из 50 заболеть оспой. Наконец, давайте считать, что оспа смертельна в одном случаев из пяти.
Я думаю, вы согласитесь, что вакцинация — хорошая мысль. Шансы получить побочную реакцию ниже, чем шансы заразиться оспой, и сама реакция гораздо менее опасна, чем болезнь. Но давайте посмотрим на данные. Из миллиона детей 990 тысяч получают прививку, у 9 900 возникает побочная реакция и 99 умирает. В то же время 10 тысяч не прививаются, 200 заражаются оспой и 40 умирает. В результате от вакцины умирает больше детей (99), чем от болезни (40).
Я понимаю родителей, которые готовы устроить демонстрацию перед министерством здравоохранения с лозунгами «Прививки убивают!». И вроде бы данные подтверждают их позицию — прививки действительно вызывают больше смертей, чем сама оспа. Но на их ли стороне логика? Надо ли запретить прививки или же стоит взять в расчет предотвращенные смерти? На рис. 7 вы найдете диаграмму причинности для этого примера.
Когда мы начали, вакцинировалось 99 % детей. Теперь мы задаем контрфактивный вопрос: «А что, если снизить число вакцинированных до нуля?». Используя вероятности, которые я привел выше, мы можем прийти к выводу, что из миллиона детей 20 тысяч заразились бы оспой и 4 тысячи умерли бы. Сравнивая контрфактивный мир с настоящим, мы видим, что отсутствие прививок стоило бы жизни 3 861 ребенку (разница между 4 тысячами и 139). Стоит поблагодарить язык контрфактивных суждений, который помогает нам избежать таких потерь.