Обобщая, следует сказать, что вероятностная причинность всегда сталкивалась с осложняющими переменными. Каждый раз, когда приверженцы вероятностной причинности пытаются починить корабль, снабдив его новым корпусом, он натыкается на тот же подводный камень и получает очередную протечку. Но, если выразить «рост вероятности» на языке условных вероятностей, как ни подлатывай корпус, на следующий уровень Лестницы не попадешь. Как бы странно это ни звучало, понятие повышения вероятности нельзя объяснить в терминах вероятностей.
Верный способ спасти идею повышения вероятности — использовать оператор
Обычно я обращаю много внимания на то, что философы хотят сказать о скользких понятиях, таких как причинность, индукция или логика научных рассуждений. У философов есть преимущество: они стоят в стороне от оживленных научных дебатов и от реалий взаимодействия с данными на практике. Они в меньшей степени, чем другие ученые, заражены антипричинными предубеждениями статистики.
Они могут привлечь традицию восприятия причинности, которая восходит к Аристотелю, и говорить о причинности, не краснея и не пряча ее за этикеткой «ассоциации».
Однако, стараясь перевести понятие причинности на язык математики, что само по себе идея, достойная похвалы, философы слишком быстро прибегли к единственному известному им языку, который может описать неопределенность, — к языку вероятности. За последний десяток лет они в основном преодолели это заблуждение, но, к несчастью, похожие идеи сейчас рассматриваются в эконометрике под названиями вроде «причинность по Грэнджеру» и «векторная автокорреляция».
И сейчас я сделаю признание: я совершил ту же ошибку. Я не всегда ставил причинность на первое место, а вероятность — на второе. Наоборот! Когда я стал работать над искусственным интеллектом в начале 1980-х годов, я думал, что неопределенность — самая важная вещь, которой не хватает ИИ. Более того, я настаивал на том, чтобы неопределенность была представлена с помощью вероятностей. Таким образом, как я объясняю в главе 3, я разработал подход к рассуждениям в условиях неопределенности под названием «байесовские сети», который имитирует, как идеализированный, децентрализованный мозг может включить вероятности в принятие решений. Если мы видим определенные факты, байесовские сети способны быстро вычислить вероятность верности или неверности определенных фактов. Неудивительно, что байе-совские сети сразу обрели популярность в сообществе ИИ и даже сегодня считаются ведущей парадигмой в искусственном интеллекте для рассуждений при неопределенности.
Хотя продолжающийся успех байесовских сетей чрезвычайно радует меня, они не смогли закрыть зазор между искусственным и человеческим интеллектом. Я уверен, что вам понятно, какой составляющей не хватает — причинности. Да, призраки причинности в изобилии витали рядом. Стрелки неизменно вели от причин к следствиям, и практики часто замечали, что диагностические системы становятся неуправляемыми, если направление стрелок меняется в обратную сторону. Но по большей части мы думали, что эта культурная привычка — артефакт былых сценариев мышления, а не центральный аспект разумного поведения.
В то время меня так опьянила сила вероятностей, что я счел причинность второстепенным понятием — просто удобством или ментальной скорописью для выражения вероятностных зависимостей и отделения релевантных переменных от нерелевантных.
В своей книге 1988 года «Вероятностные рассуждения в интеллектуальных системах» (