Остальные аксиомы казались очевидными, чего в них сомневаться, а вот эта – нет. И все же от нее невозможно было избавиться, не уничтожив огромных кусков математики, а упростить вроде и не упростишь. Трудно вообразить, сколько усилий потратили впустую в химерической надежде это сделать, говорил Пуанкаре.
Наконец, в первой четверти XIX века венгр и русский – Бойяи[28]
и Лобачевский – почти одновременно и неопровержимо установили, что доказать пятый постулат Евклида невозможно. Они размышляли так: был бы способ свести постулат Евклида к другим, более определенным аксиомам – стало бы заметно нечто другое: переворот постулата Евклида создаст логические противоречия в геометрии. Вот они и перевернули постулат.Лобачевский допускает, что через данную точку можно провести две параллели к данной прямой. И сохраняет остальные аксиомы Евклида. Из этих гипотез он выводит серию непротиворечивых теорем и выстраивает геометрию, чья безупречная логика ни в чем не уступает логике евклидовой геометрии.
Стало быть, собственной неспособностью найти противоречия он доказывает, что пятый постулат несводим к аксиомам попроще.
Но тревожило не доказательство. И его, и все остальное в математике вскоре затмила рациональная побочка этого доказательства. Математика, краеугольный камень научной определенности, вдруг стала неопределенной.
У нас появились
Вот что и стало основой глубокого кризиса, который подорвал научное самодовольство позолоченного века.
И, само собой, раз двери открылись, едва ли можно было ожидать, что противоречащие друг другу системы непоколебимой научной истины ограничатся двумя. Появился немец по фамилии Риман – с еще одной непоколебимой системой геометрии, которая швыряет за борт не только постулат Евклида, но и первую аксиому, утверждающую, что через две точки можно провести лишь одну прямую. Снова нет внутреннего противоречия – есть только несовместимость с геометриями Евклида и Лобачевского.
По теории относительности лучше всего описывает наш мир геометрия Римана.
У Три-Форкс дорога врезается в узкий каньон, где скалы покрыты беловатым налетом, и проходит мимо пещер Льюиса и Кларка. К западу от Бьютта преодолеваем долгий и трудный подъем, пересекаем Великий континентальный раздел и спускаемся в долину. Затем минуем огромную трубу плавильного завода в Анаконде, заворачиваем в сам городок и находим отличный ресторан со стейками и кофе. Потом долго поднимаемся по дороге, что ведет к озеру в хвойных лесах, едем мимо рыбаков, сталкивающих на воду лодчонку. Дорога опять сворачивает в сосны, и я по солнцу определяю, что утро уже почти на исходе.
Проезжаем через Филлипсберг и выбираемся на луга в долине. Встречный ветер резче, и я сбавляю скорость до пятидесяти пяти, чтобы не так дуло. Едем сквозь Мэксвилл, а когда приближаемся к Холлу, нам уже очень нужно отдохнуть.
У дороги находим погост и останавливаемся. Поднялся сильный ветер и стало зябко, но солнце греет, и мы кладем шлемы и расстилаем куртки с подветренной стороны церквушки. Здесь очень открыто и одиноко, но прекрасно. Когда вдалеке горы или даже холмы – есть простор. Крис утыкается лицом в куртку и пытается заснуть.
Теперь, без Сазерлендов, все иначе – одиноко. Прости, но я еще немного поговорю, пока не пройдет одиночество.
Чтобы разрешить проблему математической истины, говорил Пуанкаре, сначала надо спросить себя, какова природа геометрических аксиом. Это синтетические
Значит, надо заключить, что аксиомы геометрии – экспериментальные истины? Пуанкаре и так не считал. Они бы тогда по мере поступления новых лабораторных данных подвергались непрерывному изменению и пересмотру. А это противоречит природе самой геометрии.