Отказы,%/Страницы/Время на сайте, мин
(Примечание
– заключительный столбец, в котором подводятся итоги.Третий лист «Статистики» посвящаем обработке результатов автоматизированного запроса отзывов:
Таблица заполняется так же, как и для welcome e-mail, за исключением последних столбцов. Конечно, отправка этого письма также может приводить к заказам, но нас больше интересует, насколько эффективно оно работает с точки зрения обратной связи.
Кол-во отзывов
– указываем количество отзывов, полученных через рассылку.Если отзывы собираются с помощью анкеты, подсчитать их несложно – достаточно заглянуть в сводку ответов.
Если отзывы размещаются на сайте или стороннем ресурсе, нужно подсчитывать их вручную (в случае сайта можно попробовать настроить соответствующую цель в сервисе веб-аналитики). Пусть значение окажется неточным, но если придерживаться одной и той же методики подсчета, наблюдать за эффективностью письма в динамике оно поможет.
% отклика
= Кол-во отзывов/Отпр x 100 % (округляем до одного знака после запятой).Абсолютные величины всегда должны дублироваться относительными. На них не влияют такие переменные факторы, как рост базы или качество доставки, поэтому они позволяют проводить оценку точнее.
Следующий лист заполняется для писем, стимулирующих второй заказ через N дней после совершения первого:
В таблицу вносятся те же показатели, что и для welcome e-mail. Здесь нас в первую очередь интересует количество заказов. Данные по трафику можно не указывать.
Думаю, принцип понятен: если у вас действуют дополнительные письма, то для аналитики каждого из них нужно завести отдельный лист в «Статистике автоматических рассылок».
Информацию о доставке и показатели эффективности стоит фиксировать повсеместно. Заключительные столбцы могут варьироваться в зависимости
Например, в случае welcome e-mail нас интересует, удается ли возвращать подписчиков на сайт и как они себя там ведут. При запросе отзывов считаем % отклика. Во время стимуляции второго заказа мы сосредоточены на продажах. Дальше следуем той же логике: приглашаем в соцсети – смотрим за динамикой вступления новых участников в сообщества. Даем промокод на день рождения – отслеживаем % его использования и заказы. И так далее.
Пример «Статистики автоматических рассылок» для всех основных видов писем вы можете посмотреть в приложении 8Б.
Как анализировать
Метод анализа автоматических писем повторяет аналитику для массовых рассылок: мы по очереди рассматриваем каждый показатель, сравниваем его с предыдущими значениями (соревнуемся сами с собой) и поставленными целями.
Процент использования промокодов в среднем составляет 5–10
(не так много, но стоит вспомнить, что многие получают его на всякий случай). Если эта величина ниже 5 % и от месяца к месяцу ситуация не меняется, пора заняться корректировкой.Поскольку приветственное письмо отправляется исключительно новым подписчикам, его показатели эффективности в целом выше, чем у массовой рассылки.
Высоким считается уровень
Высокие клики
Одна из задач welcome – рассказать больше о магазине. Устроить своеобразную экскурсию по сайту. Поэтому, конечно, показатель отказов хочется видеть поменьше, а количество просмотренных страниц и длительность посещения – побольше. Это покажет, что заинтересованность подписчиков высока.
Тем не менее по факту придется работать с чем придется. «Наращивать обороты» здесь можно с помощью полезного контента, ссылки на который размещаются в письме.
Как правило, отзыв запрашивается через 2–3 недели после покупки. Здесь эффект новизны, как в случае с welcome e-mail, уже теряется, поэтому показатели эффективности не так высоки, однако в среднем все равно выше, чем у массовой рассылки.
Наиболее пристального внимания заслуживает