99. Графические методы
Графические методы связаны, прежде всего, с геометрическим изображением функциональной зависимости при помощи линий на плоскости. Графики используются для быстрого нахождения значения функций по соответствующему значению аргумента, для наглядного изображения функциональных зависимостей.
В экономическом анализе применяются почти все виды графиков: диаграммы сравнения, диаграммы временны́х рядов, кривые распределения, графики корреляционного поля, статистические картограммы. Особенно широко распространены в анализе
С помощью координатной сетки строятся
Основным материалом сетевого планирования, используемого при анализе, является информация о ходе работ по графику, который обычно составляется не реже одного раза в декаду. Оптимизация сетевых графиков осуществляется на стадии планирования посредством сокращения критического пути. Решение оптимизационных задач существенно облегчается наличием пакетов прикладных программ (ППП), приспособленных к составлению оптимальных сетевых графиков на ЭВМ.
100. Методы линейного программирования
Методы линейного программирования применяются для решения многих экстремальных задач, с которыми довольно часто приходится иметь дело в экономике. Решение таких задач сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин.
Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.
С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок).
Все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу – значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из весьма значительного количества альтернативных вариантов. При помощи других способов решать такие задачи практически невозможно.
Весьма типичной задачей, решаемой с помощью линейного программирования, является
101. Классификация видов экономического анализа