Чтобы пояснить эти важные стороны теории, рассмотрим сначала пример, в котором отброшены детали, несущественные для понимания новой физики. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Эта вселенная, имеющая два пространственных измерения, была введена в главе 8 до обсуждения теории струн с целью разъяснения идей Калуцы и Клейна 1920-х гг. Давайте использовать её в качестве «космологической сцены» для исследования теории струн в простой постановке. Достигнутое понимание свойств этой теории будет использовано ниже для того, чтобы лучше разобраться со всеми пространственными измерениями в теории струн. С этой целью вообразим, что сначала циклическое измерение вселенной Садового шланга имеет нормальный размер, но затем начинает сжиматься всё сильнее и сильнее, приближаясь по форме к Линляндии и приводя к Большому сжатию в упрощённом и частичном варианте.
Интересующий нас вопрос состоит в том, будут ли геометрические и физические характеристики этого космического коллапса иметь свойства, позволяющие явно отличить Вселенную, основанную на струнах, от Вселенной, основанной на точечных частицах.
Существенно новая черта
Не нужно много времени, чтобы обнаружить существенно новую характеристику физики струн. В нашей двумерной вселенной точечная частица может двигаться так, как показано на рис. 10.2: вдоль протяжённого измерения Садового шланга, вдоль циклического измерения, или по обоим измерениям сразу. Замкнутая струна может совершать аналогичные движения, с той разницей, что при движении по поверхности струна колеблется (рис. 10.3
Рис. 10.2.
Точечные частицы, движущиеся по цилиндруРис. 10.3.
Струны на цилиндре могут двигаться в двух конфигурациях — «ненамотанной» или «намотанной»Сейчас нас интересует другое отличие между движением частиц и струн, непосредственно связанное с формой пространства, где движется струна. Так как струна является протяжённым объектом, она может существовать ещё в одной конфигурации, отличной от упомянутых выше. Струна может
Физические свойства намотанных струн
Выше при обсуждении движения струн основное внимание уделялось ненамотанным струнам. Струны, которые могут наматываться по циклической пространственной координате, имеют почти тот же набор свойств, что и рассмотренные выше струны. Их колебания также вносят существенный вклад в наблюдаемые величины. Главное отличие состоит в том, что у намотанной струны имеется