Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся лёгкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе лёгких и на основе тяжёлых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.

Минимальный размер

Предыдущее обсуждение было лишь разминкой; теперь мы перейдём к главному. Если всё время измерять расстояния «простым способом», т. е. использовать самые лёгкие моды струны вместо самых тяжёлых, полученные результаты всегдабудут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трёх пространственных измерений в предположении, что они являются циклическими. Для определённости примем, что в начале мысленного эксперимента лёгкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. Rстанет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.

По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения даёт значения, обратныезначениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R(измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/ R(измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались лёгкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.

В частности, здесь удаётся избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью лёгких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых лёгких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.

Использование лёгких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия теории струн. Именно этопонятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь ещё с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для неё области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование даёт понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже