Следовательно, хорошо знакомые протяжённые измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами
Rи 1/
Rтеории струн. Приведём несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т. е. примерно
R= 10
61в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1/
R= 1/10
61= 10
-61в единицах планковской длины!
И это — хорошо нам знакомые измерения в альтернативном описании по теории струн.На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться ещё меньше, так как 1/
Rуменьшается, когда
Rрастёт. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес? И, более того, здесь сам собой перед нами встаёт второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус
Rбольше планковской длины, то 1/
Rс необходимостью меньше неё. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трёх поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.Два взаимосвязанных понятия расстояния в теории струн
В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.
Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны,
не намотанныевокруг циклического измерения, а во втором — струны, которые
намотанывокруг него. Свойство протяжённости фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.