Читаем Электроника и электротехника. Шпаргалка полностью

Линейные напряжения равны соответствующим фазным напряжениям:

Можно написать, что при соединении источника треугольником вообще U′л = U′ф

Векторная диаграмма фазных и линейных напряжений при соединении источника треугольником приведена на рисунке 24.

<p>21. СОЕДИНЕНИЯ ПРИЕМНИКОВ ЗВЕЗДОЙ</p>

Из рисунке 25 видно, что при соединении звездой фазные напряжения приемника Ua , Ub и Uc не равны линейным напряжениям Uab , Ubc и Uca . Применяя второй закон Кирхгофа и к контурам aNba , bNcb и cNac , можно получить следующие соотношения между линейными и фазными напряжениями:

. Нетрудно построить векторы линейных напряжений (рис. 26).

Рис. 25. Схема соединения приемника звездой

Рис. 26. Векторная диаграмма при соединении приемника звездой в случае симметричной нагрузки

Если не учитывать сопротивлений линейных проводов и нейтрального провода, то следует считать комплексные значения линейных и фазных напряжений приемника равными, соответственно, комплексным значениям линейных и фазных напряжений источника. Вследствие указанного равенства векторная диаграмма напряжений приемника не отличается от векторной диаграммы источника при соединении звездой (см. рис. 26). Линейные и фазные напряжения приемника, как и источника, образуют две симметричные системы напряжений. Между линейными и фазными напряжениями приемника существует соотношение

Uл=√3Uф

Это соотношение справедливо при определенных условиях также в случае отсутствия нейтрального провода, т. е. в трехпроводной цепи.

На основании указанного соотношения можно сделать вывод о том, что соединение звездой следует применять в том случае, когда каждая фаза трехфазного приемника или однофазные приемники рассчитаны на напряжение в √3 раз меньшее, чем номинальное линейное напряжение сети.

Из схемы рисунке 25 видно, что при соединении звездой линейные токи равны соответствующим фазным токам: I д = I ф.

С помощью первого закона Кирхгофа получим следующее соотношение между фазными токами и током нейтрального провода:

Имея векторы фазных токов, нетрудно построить вектор тока нейтрального провода.

Если нейтральный провод отсутствует, то

<p>22. СОЕДИНЕНИЯ ПРИЕМНИКОВ ТРЕУГОЛЬНИКОМ</p>

Как видно из схемы, каждая фаза приемника при соединении треугольником подключена к двум линейным проводам. Поэтому независимо от значения и характера сопротивлений приемника каждое фазное напряжение равно соответствующему линейному напряжению: U ф = U л.

Рис. 27. Соединение фаз приемника треугольником и векторные диаграммы в случае симметричной нагрузки

Если не учитывать сопротивлений проводов сети, то напряжения приемника следует считать равными линейным напряжениям источника.

На основании схемы и последнего выражения можно сделать вывод о том, что соединение треугольником следует применять тогда, когда каждая фаза трехфазного приемника или однофазные приемники рассчитаны на напряжение, равное номинальному линейному напряжению сети. Фазные токи Iab , Ibc и Ica в общем случае не равны линейным токам Ia , Ib и Ic . Применяя первый закон Кирхгофа к узловым точкам a , b , c , можно получить следующие соотношения между линейными и фазными точками:

Используя указанные соотношения и имея векторы фазных токов, нетрудно построить векторы линейных токов.

При симметричной нагрузке в отношении любой фазы справедливы все формулы, полученные ранее для однофазных цепей, например:

При симметричной нагрузке:

При несимметричной нагрузке:

Рис. 28. Соединение фаз приемника треугольником

<p>23. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ МАГНИТНЫХ УСТРОЙСТВ</p>

Магнитный усилитель (МУ) состоит из двух ферромагнитных магнитопроводов, на каждом из которых расположены рабочая обмотка ОР и обмотка управления ОУ. Для уменьшения потерь мощности магнитопроводы изготовляют из отдельных стальных листов. В некоторых случаях применяют ферритовые магнитопроводы. Рабочие обмотки соединяют, как показано на рисунке, параллельно либо последовательно и подключают к источнику переменного тока.

В цепь рабочих обмоток включен приемник электрической энергии rn . Обмотки управления соединены последовательно и получают питание от источника постоянного тока. Существенным является то, что обмотки управления включены встречно. Это дает возможность значительно уменьшить переменную составляющую тока в цепи управления, возникающую из-за магнитной связи между обмотками. Часто вместо двух обмоток управления МУ снабжается одной. Чтобы уменьшить переменную составляющую тока в цепи управления, обмотка должна охватывать в этом случае сразу два стержня магнитопроводов.

Цепь обмоток управления является входной цепью МУ, цепь рабочих обмоток – его выходной цепью.

Магнитный усилитель, изображенный на рисунке 29а, называется усилителем с выходом на переменном токе. Если приемник рассчитан на питание постоянным током, то его включают в цепь рабочих обмоток через выпрямительный мост (рис. 29б).

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки