Читаем Электроника и электротехника. Шпаргалка полностью

Проводники второй и третьей фаз обмотки создают аналогичные магнитные поля, но сдвинутые в пространстве на угол 120°. Если одну фазу обмотки подключить к сети однофазного тока, где напряжение изменяется во времени синусоидально, то магнитное поле будет изменяться во времени синусоидально с частотой тока сети. Таким образом, магнитное поле, созданное синусоидальным током одной фазы, распределяется вдоль воздушного зазора примерно синусоидально, неподвижно в пространстве и изменяется во времени.

Обмотка статора асинхронного двигателя соединяется звездой или треугольником и подключается к сети трехфазного тока. Поскольку каждая фаза обмотки имеет одинаковое число витков и они симметрично расположены по окружности статора, их сопротивление и амплитуда тока будут одинаковыми, но токи в фазах обмотки будут сдвинуты во времени относительно друг друга на 120°. Токи каждой фазы обмотки создадут магнитные поля, которые будут сдвинуты во времени на тот же угол. В результате сложения магнитных полей всех фаз образуется общее магнитное поле двигателя. Магнитная индукция результирующего магнитного поля оказывается распределенной вдоль воздушного зазора также по синусоиде, ее амплитуда не изменяется во времени и в 1,5 раза больше амплитуды магнитной индукции одной фазы. Результирующее магнитное поле вращается с постоянной частотой.

Для доказательства образования вращающегося магнитного поля воспользуемся графоаналитическим методом, с помощью которого построим картину магнитного поля для нескольких моментов времени периода переменного тока.

Сравнивая картины магнитных полей и векторные диаграммы, убедимся, что за время Т / 3 результирующее магнитное поле двухполюсного асинхронного двигателя повернется в пространстве на 120°, оставаясь неизменным по амплитуде. За время одного периода поле повернется на 360° (2π), т. е. сделает один оборот.

Угловая скорость поля равна ω0 = 2π / T.

Частота вращения магнитных полей всех двухполюсных асинхронных двигателей, включенных в промышленную сеть, составляет n 060 × 50 = 3000 об/мин.

Двигатели выполняются не только с двумя, но и с четырьмя, шестью, восемью и более полюсами; в общем случае они имеют р пар полюсов. Обмотка каждой фазы статора таких двигателей состоит из нескольких частей, которые соединяются между собой параллельно или последовательно.

<p>48. ЭДС, ЧАСТОТА ТОКА РОТОРА, СКОЛЬЖЕНИЕ</p>

Частота тока статора пропорциональна частоте вращения магнитного поля, созданного током статора: f 1 = n 0 p / 60.

Так как ротор вращается в сторону поля (рис. 47), частота пересечения его обмотки магнитным полем будет определяться разностью частот вращения магнитного поля и ротора. Частота тока ротора:

f 2 = ( n 0 – n ) p / 60.

Рис. 47. Пояснение скольжения и частоты тока ротора

Из последних отношений f 1 / f 2 = n / ( n 0 – n ) получаем выражение частоты тока ротора f 2 ( n 0 – n ) / n 0 = f 1 s , где s – скольжение: s = ( n 0 – n ) / n 0.

Скольжение – величина безразмерная, представляющая собой частоту вращения ротора относительно поля статора, выраженную в долях частоты вращения поля статора.

Когда ротор неподвижен, n = 0,

s = ( n 0 – n ) / n 0 = 1, f 2 = f 1 s = f 1 × 1 = f 1.

Если ротор вращается с частотой поля, то

s = ( n 0 – n ) / n 0 = 0, f 2 = f 1 s = f 2 × 0 = 0.

При неподвижном роторе его обмотка относительно поля находится в тех же условиях, что и обмотка статора. Поэтому ЭДС обмотки ротора может быть определена по аналогичной формуле, что и ЭДС обмотки статора:

E 2 k = 4,44 f 1ω2 Фk 02,

где ω2 – число витков фазы обмотки ротора;

k 02 – обмоточный коэффициент обмотки ротора.

Когда ротор вращается:

E 2 = 4,44 f 2ω2 Фk 02.

Из двух последних отношений вытекает, что:

E 2 = E 2 k = f 2 / f 1;

E 2 = E 2 k = f 1 s / f 1 = E 2 ks .

Таким образом, ЭДС обмотки ротора пропорциональна скольжению.

При n = 0, s = 1, E 2 = E 2 k ;

при n = n 0, s = 0, E 2 = 0.

<p>49. ЭЛЕКТРОМАГНИТНАЯ МОЩНОСТЬ И ПОТЕРИ В АСИНХРОННОМ ДВИГАТЕЛЕ</p>

Мощность, потребляемая двигателем из сети, определяется по формуле:

Часть этой мощности (рис. 48) теряется в обмотке статора: Δ P обм1 = 3 l 21 r 1, а часть Δ P СТ1 составляет потери в сердечнике статора от перемагничивания и вихревых токов.

Рис. 48. Потери мощности в асинхронном двигателе

Мощность, передаваемая вращающимся магнитным полем ротору, называется электромагнитной мощностью и составляет:

P эм = P 1 – Δ P обм1 – Δ P CE1 = 3 E 2 kl 2 cos ψ1.

Часть электромагнитной мощности теряется в обмотке ротора: Δ P обм2 = 3 l 22 r 2, а часть Δ P СТ2 составляет потери в сердечнике ротора от гистерезиса и перемагничивания.

Мощность, преобразуемая в механическую, равна:

P мех = P эм – Δ P обм2 – Δ P CТ2.

Небольшая часть механической мощности теряется на трение в подшипниках ротора о воздух и вентиляцию.

Мощность, развиваемая двигателем на валу:

P в = P мех – Δ P мех.

Все потери мощности, кроме вентиляционных, которые представляют собой затраты мощности на продувание воздуха внутри двигателя с целью лучшего охлаждения, превращаются в теплоту и нагревают двигатель.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки