Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

А вот пройдя по нити лампочки, мы обнаружим большое различие в количестве избыточных электронов — на одном конце нити их, как мы только что установили, 990, а на другом оказывается уже 590 — разница в 400 избыточных электронов. Двигаясь дальше, мы в какой-то момент обнаружим участок цепи, где избыточных электронов вообще нет, а затем начнут появляться избыточные положительные заряды, положительные ионы самого металла. По мере продвижения к «плюсу» количество избыточных положительных зарядов будет все возрастать и на положительном электроде достигнет своего максимума — 1000 лишних ионов в каждой пробе.

Учебный фильм «Путешествие вдоль электрической цепи» так же, как и наш третий вариант санного спуска (крутизна отдельных участков тем больше, чем больше трение по их поверхности), иллюстрирует точно установленный порядок распределения избыточных зарядов. До тех пор, пока генератор находится в одиночестве, избыточные заряды сконцентрированы только на его электродах. Но подключите к генератору внешнюю цепь, и продукция генератора — избыточные заряды — появится во всей цепи, распределится по различным ее участкам. Но неравномерно. Заряды автоматически распределятся так, что на участок с большим сопротивлением придется большее их количество. А это значит, что чем больше сопротивление участка, тем сильнее будут проталкиваться через него свободные электроны. И в итоге получится, что во всех участках, независимо от их сопротивления, установится одинаковый ток. Так же как может установиться одинаковая скорость движения саней на горке с разным покрытием (лед, снег, земля) и с разной крутизной спуска.

Хочется обратить особое внимание на слово «автоматически». Скопление зарядов на разных участках цепи регулируется самим током. Если вдруг в какой-нибудь точке избыточных зарядов станет чуть больше или чуть меньше, например, потому, что по каким-то причинам сопротивление одного из участка цепи изменилось, ток тут же на мгновение изменится и исправит нарушение баланса, добавит немного зарядов или убавит. Причем всегда с таким расчетом, чтобы восстановить свое неизменное значение во всей цепи.

Теперь мы должны другими глазами взглянуть на электрическую цепь, по которой идет ток. На каждом участке такой цепи, а не только на электродах генератора, есть избыточные заряды, а значит, между любыми двумя точками цепи действует электродвижущая сила. Конечно же, первопричина всех этих местных электродвижущих сил — генератор. Именно в нем за счет других видов энергии (свет, тепло, химические реакции, механическая работа) происходит электризация атомов, накапливаются избыточные электроны или положительные ионы. Но в итоге все избыточные заряды, вся электрическая энергия, вырабатываемая генератором, распределяется между участками цепи. А могло ли быть иначе? Нужно же как-то двигать свободные заряды по этим участкам, создавать в них ток…

Ту часть э.д.с., которая достается какому-либо участку цепи, принято называть напряжением на этом участке и обозначать буквой U (Р-21. Р-22).



Р-22


Как уже несколько раз подчеркивалось, разница в избыточных зарядах на концах какого-либо участка последовательной цепи автоматически оказывается тем больше, чем больше сопротивление этого участка. То есть, иными словами, напряжение на участке цепи пропорционально сопротивлению участка. Ну, а кроме того, по абсолютной величине это напряжение тем больше, чем больше сама э.д.с., — если делить на несколько человек большой каравай хлеба, то каждому достанется больше, чем если бы делить маленькую булочку (Р-26;2).

И еще — между током I, напряжением U на участке и сопротивлением R действуют соотношения закона Ома, в этом случае их называют законом Ома для участка цепи (Р-22;2,3,4. Р-23).



Р-23


Если отвлечься от того, что происходит во всей последовательной цепи, и рассматривать только события на одном ее участке, то из формулировок закона Ома наиболее удобной становится такая: напряжение на участке цепи тем больше, чем больше его сопротивление и чем больший ток по нему идет (Р-22;2). Вот в этом самом «…чем больший ток по нему идет» отражены сразу все сложные взаимные связи между элементами цепи. В частности, отражено то, что на напряжение влияет э.д.с. генератора: чем она больше, тем больше ток в цепи и, значит, напряжение во всех ее участках.

Местная э.д.с., то есть напряжение на участке цепи (часто говорят — «падение напряжения»), это не выдумка, помогающая что-то объяснить или подсчитать. Это реальность. Причем настолько реальность, что к любому участку цепи, как к генератору, можно подключить свою нагрузку и образовать свою местную цепь в большой общей цепи. При подключении такой местной нагрузки, как при всяком параллельном подключении, несколько уменьшится общее сопротивление этого участка, а значит, и реально действующее на нем напряжение.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника