Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Это, может быть, и несправедливо, потому что в большинстве реальных цепей ток создается электронами, отрицательно заряженными частицами. Однако исторически получилось так, что главными были названы положительные частицы: в то время не имели представления об электронной природе тока в проводниках. И теперь нам ничего другого не остается, как считать, зачастую вопреки истине, что ток создают не электроны, а какие-то положительно заряженные шарики и что, конечно же, идет такой ток от «плюса» к «минусу». Тому, кто будет испытывать в связи с этим неудобства, ощущать внутренние протесты, можно предложить два утешения. Во-первых, условное направление тока — это не более чем условное направление тока, мы пользуемся им в основном тогда, когда нужно водить пальцем по схеме, а при этом в реальной цепи жизнь идет своим чередом. Во-вторых, рассматривая электрическую цепь и считая, что в ней от «плюса» к «минусу» двигаются положительные «шарики», мы получим точно те же результаты (те же величины токов и напряжений, те же полярности напряжений), как и в том случае, если бы считали, что ток создают электроны и идут они от «минуса» к «плюсу» (Р-28; 2,3).



Р-28; 2,3


Т-43. Конденсатор — устройство для накопления электрических зарядов. Если расположить одну над другой две металлические пластины и на короткое время подключить их к генератору, то на пластинах накопится какое-то количество зарядов и они будут оставаться там довольно долго. То, что заряды не уходят с пластин, можно упрощенно объяснить так: пластины эти находятся близко, и разноименные заряды своими электрическими полями притягиваются друг к другу и не дают друг другу уйти с пластин. Такой пластинчатый накопитель зарядов называют конденсатором (Р-29;1) и на схемах обозначают буквой С (от слова capacitor — накопитель). Конденсаторы различаются формой пластин и веществом (изолятором), которое находится между ними. Обкладки конденсатора — так часто называют его пластины — выполняют в виде дисков, вставленных друг в друга трубок, свернутых в спираль металлических лент (К-3).



Р-29


Т-44. Емкость конденсатора характеризует его способность накапливать заряды; единица измерения емкости — фарада. Количество зарядов, которое накапливается на конденсаторе, зависит от того, каким напряжением его заряжали: чем больше это напряжение, тем больший заряд оно втолкнет на пластины при прочих равных условиях. А еще количество накопленных зарядов зависит от свойств самого конденсатора. О его способности накапливать заряды говорит особая характеристика — емкость конденсатора. Единица электрической емкости — фарада, такая емкость будет у некоторого условного конденсатора, в котором под действием зарядного напряжения 1 вольт накопится заряд в 1 кулон (Р-29;5). Емкость конденсатора тем больше, чем больше площадь его пластин (иногда для увеличения этой площади делают конденсаторы с большим числом параллельно соединенных пластин) и чем меньше расстояние между ними (чем ближе пластины, тем сильнее притягивающее поле одной из них действует на заряды, которые находятся на другой). Кроме того, емкость определяется свойствами вещества между пластинами. О них говорит характеристика вещества, которая называется диэлектрической постоянной ε (С-5): чем она больше, тем, при прочих равных условиях, больше емкость. Так, например, если воздушный конденсатор (между пластинами — воздух) поместить в масло, то его емкость увеличится в два-три раза: масла в два-три раза больше, чем воздуха.

Особое место занимают электролитические конденсаторы, у которых много общего с химическими источниками тока. В электролитических конденсаторах под действием приложенного постоянного напряжения происходят определенные электрохимические процессы, благодаря которым резко увеличивается емкость. Поэтому электролитические конденсаторы включают в цепь таким образом, чтобы на них действовало постоянное напряжение. Причем в определенной полярности: тот вывод конденсатора, возле которого стоит знак «+» обязательно должен быть подключен к «плюсу» источника, тот, где указан «—», к «минусу» (К-3).

Фарада (сокращенно — Ф) — единица чрезвычайно большая. Если принять расстояние между пластинами в 1 мм, то для получения емкости в 1 Ф нужно было бы взять дисковые пластины диаметром чуть ли не в 30 километров. Встречаемые на практике конденсаторы (электролитические) имеют емкость в несколько тысяч или, в лучшем случае, несколько десятков тысяч микрофарад (мкФ). Важная характеристика конденсатора — его рабочее напряжение. Оно обычно указано на корпусе, и превышать его при зарядке конденсатора нельзя. Это может привести к пробою, к разрушению диэлектрика, пластины конденсатора замкнутся, и он превратится в обычный проводник (Р-29;6).

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника