Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Подключив резистор параллельно нагрузке, можно уменьшить идущий в нее ток (Р-26; 6). Резистор, который мы включили для ответвления лишнего тока, называется шунтом («шунт» в переводе на русский — обходной путь), а сам процесс уменьшения тока с помощью шунта называют шунтированием. Чем меньше сопротивление шунта, тем большая часть тока пойдет в него и меньшая — в нагрузку.

Т-41. Электрическая мощность — произведение напряжения на ток; единица измерения мощности — ватт. С одной стороны, мы знаем, что мощность — это работа, выполненная за единицу времени, и что единица измерения мощности — ватт соответствует работе в 1 джоуль за 1 секунду (Т-29). С другой стороны, напряжение — это есть работа, которую выполняет в электрической цепи каждый кулон движущихся зарядов, а ток — число кулонов, которое проходит по цепи каждую секунду (Т-30). Отсюда следует, что мощность, потребляемая участком цепи, — это произведение тока на напряжение, произведение числа кулонов в секунду на число джоулей, которое нарабатывает каждый кулон (Р-27). Мощность возрастает и с увеличением напряжения, и с увеличением тока.



Р-27


Если неизвестен один из сомножителей в формуле мощности (ток или напряжение), можно определить его по одной из формул закона Ома (Р-22;2,3). И тогда получатся две новые формулы для подсчета мощности (Р-27;2,3). Они поясняют, что при неизменном сопротивлении участка R выделяемая в нем мощность Р связана с током I или напряжением U квадратичной зависимостью (Р-27;4,5): при увеличении тока в два раза мощность возрастет в четыре раза; повышение напряжения в пять раз увеличит мощность в двадцать пять раз.

Здесь нет никакого противоречия с тем, что говорит первая формула для подсчета мощности (Р = UI). Потому что с увеличением тока в цепи всегда возрастает напряжение на участке и, значит, увеличение тока сразу по двум каналам, двумя «рычагами», влияет на мощность: само по себе (растет число кулонов в секунду) и повышая напряжение (растет работоспособность каждого кулона). Напряжение также двумя «рычагами» влияет на мощность: если увеличить напряжение на участке цепи, не меняя его сопротивления, то при этом сразу же мощность поднимется за счет увеличения работоспособности каждого заряда, и еще она увеличится потому, что с ростом напряжения возрастет и ток, увеличится число работающих кулонов.

Сама эта характеристика — «мощность» — может относиться и к генератору, и к нагрузке, и к любому другому элементу цепи. Мощность генератора говорит о том, какое количество работы он может выполнить в электрической цепи каждую секунду. Мощность, которая указана на пассивных элементах электрической цепи, на потребителях энергии, — это то, что в нормальном режиме может переварить этот элемент. Например, если на лампочке написано «100 Вт», это значит, что каждую секунду она может превращать в свет (и, к сожалению, в тепло) 100 джоулей электрической энергии. А если подвести к такой лампочке большую мощность, увеличив, например, напряжение на ней, то лампочка просто выйдет из строя: количество тепла, выделяемого в ней, возрастет и температура нити превысит расчетную величину.

Мощность, указанная на корпусе резисторов, также предостерегает от нарушения теплового режима (Р-27;6): если превысить допустимую мощность, резистор может перегреться, его проводящий слой разрушится (это заметно внешне — чернеет окраска корпуса) и деталь выйдет из строя. На схемах допустимую мощность резисторов указывают условными знаками.

Если же условного знака нет, то, значит, в данной цепи на резисторе выделяется ничтожно малая мощность и можно применять деталь любого типа.

Т-42. Условное направление тока от «плюса» к «минусу». В цепи, где есть жидкий или газообразный проводник, можно наблюдать движение зарядов в нем одновременно в двух противоположных направлениях — свободные электроны идут от «минуса» к «плюсу», положительные ионы — от «плюса» к «минусу» (Р-28;1).



Р-28;1


Во многих случаях при тепловом действии тока, например, это не имеет значения — куда бы ни двигался заряд, он делает свое дело, работает. Более того, рассматривая схемы электрических цепей, как правило, совсем не нужно знать подробности, не нужно знать, какие именно заряды создают ток: электроны, положительные ионы или те и другие одновременно. Поэтому, рассматривая схемы, обычно забывают о конкретных носителях заряда и представляют себе, что ток создается только одним сортом частиц, а именно положительно заряженными частицами.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника