Другая схема предусматривала использование двух камер, работающих на режиме первой ступени совместно - одна на керосине, другая на водороде, на режиме второй ступени ракеты углеводородная камера отключается. При работе водородной камеры во втором режиме возрастает геометрическая степень расширения без изменения конструкции.
Рассматривалась схема трёхкомпонентного двигателя с двумя соосными камерами сгорания и соплом двойного расширения. Центральное сопло - углеводородное, кольцевое периферийное - водородное. Один газогенератор в этой схеме работает с избытком кислорода. Вырабатываемое им рабочее тело подаётся на турбину, вращающую насосы кислорода. Второй газогенератор с избытком водорода вращает турбину водородного и углеводородного горючего. Схема трёхкомпонентного двигателя с двойным критическим сечением отличалась от схемы с соосными камерами сгорания главным образом тем, что продукты сгорания водородной и углеводородной камер смешиваются в дозвуковой зоне. Однако это условие ограничивало давление в углеводородной камере.
Ещё один вариант трёхкомпонентного двигателя предусматривал параллельное расположение камер сгорания. Схема отличалась от предыдущих лишь тем, что водородная камера сгорания с соплом размещена отдельно, а не вокруг углеводородной камеры.
Был проведен анализ эффективности рассмотренных схем трёхкомпонентных двигателей применительно к одноступенчатым ракетам-носителям. Рассчитывались оптимальные траектории и размеры ракеты-носителя, обеспечивающие вывод на орбиту одинаковой для каждой схемы полезной нагрузки по массе. Основная задача оптимизации ракеты-носителя заключалась в поиске наиболее выгодного распределения тяги между водородной и углеводородной камерами сгорания или, в других схемах, между двигателями водородными и углеводородными. Оптимум достигается, если трёхкомпонентными двигателями создаётся примерно 80% тяги, а доля углеводородного горючего составляет приблизительно 67%. Снижение сухой массы ракеты составляло около 22%, если сравнивать чисто водородную одноступенчатую ракету с ракетой, снабжённой трёхкомпонентными двигателями. Наименьшая масса получалась при доле тяги углеводородной камеры, равной или превышающей 75%. Использование схемы с соосными камерами сгорания и соплом двойного расширения позволяет уменьшать сухую массу ракеты-носителя на 19%. Варианты с параллельным расположением камер сгорания аналогичны двигателю с соосными камерами сгорания и соплом двойного расширения, разница в массе определяется в этом случае лишь двухпозиционным раздвижным соплом водородной камеры, что даёт выигрыш в сухой массе ракеты до 4%.
Из анализа следует, что необходимо учитывать донную площадь ракеты, образуемой комбинациями трёхкомпонентных двигателей различных систем, которая влияет на величину массы несущих элементов и аэродинамическое сопротивление.
Результаты расчётов, проведенные Д.Мартином, показывают, что двухступенчатые ракеты с трёхкомпонентным двигателем имеют меньшую массу, чем одноступенчатые. Применение трёхкомпонентных двигателей с соплом двойного расширения на обеих ступенях уменьшает сухую массу ракеты-носителя на 9% по сравнению с аналогичными вариантами одноступенчатой схемы. Использование трёхкомпонентных двигателей на ускорителях не приводит к существенному выигрышу сухой массы. Однако двухступенчатая схема требует разработки технических средств для обеспечения питания двигателей одной ступени от баков другой.
Далее сделаны выводы, что трёхкомпонентные двигатели позволяют снизить сухую массу ракеты-носителя. Наиболее высокая экономия возможна при применении схемы сопла двойного расширения.
Вариант "Энергия-2" или ГК-175