В нашем представлении, развитие многоразовых систем зависит менее от технических проблем, чем oт эмоционально-психологических. Наше убеждение - следует преодолеть этот барьер. Не приходит же мысль использовать самолет только на один рейс или автомобиль на одну поездку. Почему же ракеты-носители выбрасываются в океан и разрушаются при падении на Землю?
Ракеты-носители своим рождением обязаны боевым ракетам, где вопрос многоразовости не возникал в принципе. Боевые ракеты проектировались на основе получения максимальной энергетической отдачи. На разработке боевых ракет росла та интеллектуальная сила, которая в настоящее время с большой инерцией перестраивается на рельсы неусложненного представления о ракетных транспортных системах. С другой стороны, действуют объективные законы космической механики и экономической эффективности.
Повторное использование требует повышенных начальных капиталовложений на величину затрат, связанных с разработкой и отработкой средств возврата, профилактики, восстановления, а также затрат на разработку космического ускорителя или ступени, способных претерпевать многократное нагружение и функционирование, например, двигательных установок многократного включения.
Вторая составляющая в балансе эффективности многоразовых систем - это вынужденные энергетические затраты ракетных систем на транспортировку органически с ними связанных конструкторских элементов, относящихся к средствам возврата, до достижения ракетой цели своего полета. Фактически масса средств возврата эквивалентна (по энергетическим затратам) массе полезной нагрузки, то есть дилемма многоразовости превращается в вопрос: или возвращаемая транспортная система, реализуемая за счет существенной части полезного груза, или полный полезный груз, но уничтожаемая ракета-носитель.
Вот совокупность проблем, решение которых не приводит к однозначному выводу об эффективности многоразовых систем. Но наличие бесчисленных вариантов спасения и возврата говорит о том, что космический мир находится на пути принятия более определенного решения в пользу многоразовости ракет-носителей, по крайней мере, используемых в коммерческих целях.
Двигатели для многоразовых систем
Для многоразовых систем перспективного плана, создаваемых на моноблочных первой и второй ступенях, приобретают значение двигатели, работающие на трёх компонентах.
НПО Энергомаш ведёт разработку двух двигателей РД-701
и РД-704, работающих на трёх компонентах. Трёхкомпонентный ракетный двигатель РД-701 работает на двух режимах: режиме максимальной тяги 200 т в пустоте с использованием трёх компонентов - кислорода, водорода и углеводородного горючего, что соответствует работе ракеты в режиме первой ступени и режиме максимальной экономичности при пониженной тяге до 40% от максимального значения с использованием двух компонентов - кислорода, водорода при работе на второй ступени.Как показал опыт, восстановительный газ на основе водорода приводит к водородному "охрупчиванию" с появлением трещин в наиболее напряжённых элементах конструкции. В связи с этим в качестве рабочего тела турбин турбонасосных агрегатов принят окислительный газ.
Турбонасосные агрегаты раздельные по каждому компоненту.
Предусмотрена окислительная схема с дожиганием при приемлемом уровне температуры рабочего тела турбины, которая позволяет обеспечить наиболее высокое давление в камере сгорания до 350 атмосфер на первом режиме. Эта схема, кроме того, позволяет в максимальной степени использовать многолетний опыт в разработке отечественных двигателей, выполненных по окислительной схеме.
В газогенераторы подаётся весь жидкий кислород и часть углеводородного топлива, потребная для выработки окислительного высокотемпературного газа, поступающего на привод турбин турбонасоса. Оставшаяся часть топлива и весь жидкий водород поступают непосредственно в камеры сгорания. На втором режиме углеводородное топливо используется только для газификации кислорода в газогенераторах.
Система подачи компонентов включает в себя три бустерных и турбонасосных агрегата каждого компонента и два однозонных газогенератора.
В конструктивном исполнении газогенераторы несколько отличаются друг от друга, что связано с необходимостью отбора части генераторного газа на привод турбины углеводородного горючего. Бустерные насосы шнековые. Система зажигания в газогенераторах и камерах - химическая, с использованием пускового горючего, заключённого в ампулы. Пневмосистема обеспечивает управление агрегатами автоматики двигателя и включает в себя баллоны с газообразным гелием.
В состав двигателя входят теплообменники для подогрева гелия и водорода, используемых в системе наддува баков. Запуск двигaтeля осуществляется на режиме малой тяги (второй режим). При переходе на второй режим керосин отключается и соответственно уменьшается подача в камеру кислорода. В камере устанавливается давление 140 атмосфер.