Читаем «Энергия» - «Буран» полностью

     В нашем представлении, развитие многоразовых систем зависит менее от технических проблем, чем oт эмоционально-психологических. Наше убеждение - следует преодолеть этот барьер. Не приходит же мысль использовать самолет только на один рейс или автомобиль на одну поездку. Почему же ракеты-носители выбрасываются в океан и разрушаются при падении на Землю?

     Ракеты-носители своим рождением обязаны боевым ракетам, где вопрос многоразовости не возникал в принципе. Боевые ракеты проектировались на основе получения максимальной энергетической отдачи. На разработке боевых ракет росла та интеллектуальная сила, которая в настоящее время с большой инерцией перестраивается на рельсы неусложненного представления о ракетных транспортных системах. С другой стороны, действуют объективные законы космической механики и экономической эффективности.

     Повторное использование требует повышенных начальных капиталовложений на величину затрат, связанных с разработкой и отработкой средств возврата, профилактики, восстановления, а также затрат на разработку космического ускорителя или ступени, способных претерпевать многократное нагружение и функционирование, например, двигательных установок многократного включения.

     Вторая составляющая в балансе эффективности многоразовых систем - это вынужденные энергетические затраты ракетных систем на транспортировку органически с ними связанных конструкторских элементов, относящихся к средствам возврата, до достижения ракетой цели своего полета. Фактически масса средств возврата эквивалентна (по энергетическим затратам) массе полезной нагрузки, то есть дилемма многоразовости превращается в вопрос: или возвращаемая транспортная система, реализуемая за счет существенной части полезного груза, или полный полезный груз, но уничтожаемая ракета-носитель.

     Вот совокупность проблем, решение которых не приводит к однозначному выводу об эффективности многоразовых систем. Но наличие бесчисленных вариантов спасения и возврата говорит о том, что космический мир находится на пути принятия более определенного решения в пользу многоразовости ракет-носителей, по крайней мере, используемых в коммерческих целях.

Двигатели для многоразовых систем

     Для многоразовых систем перспективного плана, создаваемых на моноблочных первой и второй ступенях, приобретают значение двигатели, работающие на трёх компонентах.

     НПО Энергомаш ведёт разработку двух двигателей РД-701 и РД-704, работающих на трёх компонентах. Трёхкомпонентный ракетный двигатель РД-701 работает на двух режимах: режиме максимальной тяги 200 т в пустоте с использованием трёх компонентов - кислорода, водорода и углеводородного горючего, что соответствует работе ракеты в режиме первой ступени и режиме максимальной экономичности при пониженной тяге до 40% от максимального значения с использованием двух компонентов - кислорода, водорода при работе на второй ступени.

      Как показал опыт, восстановительный газ на основе водорода приводит к водородному "охрупчиванию" с появлением трещин в наиболее напряжённых элементах конструкции. В связи с этим в качестве рабочего тела турбин турбонасосных агрегатов принят окислительный газ.

      Турбонасосные агрегаты раздельные по каждому компоненту.

      Предусмотрена окислительная схема с дожиганием при приемлемом уровне температуры рабочего тела турбины, которая позволяет обеспечить наиболее высокое давление в камере сгорания до 350 атмосфер на первом режиме. Эта схема, кроме того, позволяет в максимальной степени использовать многолетний опыт в разработке отечественных двигателей, выполненных по окислительной схеме.

      В газогенераторы подаётся весь жидкий кислород и часть углеводородного топлива, потребная для выработки окислительного высокотемпературного газа, поступающего на привод турбин турбонасоса. Оставшаяся часть топлива и весь жидкий водород поступают непосредственно в камеры сгорания. На втором режиме углеводородное топливо используется только для газификации кислорода в газогенераторах.

      Система подачи компонентов включает в себя три бустерных и турбонасосных агрегата каждого компонента и два однозонных газогенератора.

      В конструктивном исполнении газогенераторы несколько отличаются друг от друга, что связано с необходимостью отбора части генераторного газа на привод турбины углеводородного горючего. Бустерные насосы шнековые. Система зажигания в газогенераторах и камерах - химическая, с использованием пускового горючего, заключённого в ампулы. Пневмосистема обеспечивает управление агрегатами автоматики двигателя и включает в себя баллоны с газообразным гелием.

      В состав двигателя входят теплообменники для подогрева гелия и водорода, используемых в системе наддува баков. Запуск двигaтeля осуществляется на режиме малой тяги (второй режим). При переходе на второй режим керосин отключается и соответственно уменьшается подача в камеру кислорода. В камере устанавливается давление 140 атмосфер.

Перейти на страницу:

Все книги серии Триумф и трагедия «Энергии» Размышления главного конструктора

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос