Читаем Энергия жизни. От искры до фотосинтеза полностью

Из всех форм энергии тепло больше всех тяготеет к хаосу. То есть вещества, отличающиеся друг от друга только тепловым содержанием, труднее различить, чем вещества, отличающиеся количеством излучаемого света или положением в гравитационном или электромагнитном поле. Следовательно, во всех спонтанных процессах, где используется нетепловая энергия, часть энергии всегда переходит в тепло, что само по себе является примером возрастания энтропии.

По той же логике, все содержащееся в системе тепло никогда не может быть полностью переведено в нетепловую энергию, поскольку такой процесс подразумевал бы уменьшение энтропии. В действительности же если часть тепла переводится в другую форму энергии, то энтропия в оставшейся части возрастает настолько, что более чем компенсирует свое снижение, получившееся в процессе перехода тепловой энергии в нетепловую.

Таким образом, очевидно, что кинетическая теория газов, разработанная во второй половине XIX века, удовлетворительным образом объясняет термодинамические явления, зафиксированные в наблюдениях первой половины столетия под влиянием теории теплорода.

Однако, как уже упоминалось в начале главы, в рамках этой новой теории объясняется и то, как человеческий организм может производить работу, сохраняя при этом свою температуру неизменной, чего прежняя теория объяснить не могла. Я этого не забыл, и мы методично движемся к выполнению обещанного. Важнейшими понятиями теперь для нас станут «атом» и «молекула» — понятия, которых в прежней теории не было, но в новой являющиеся краеугольными.


Глава 7.

ЧАСТИЦЫ, УДЕРЖИВАЕМЫЕ ВМЕСТЕ

Соблазнительно было бы думать о человеческом организме (и вообще о живой ткани) как о механизме, извлекающем работу из равномерно нагретой системы просто в силу каких-то особых своих свойств, позволяющих противодействовать энтропии. Ведь в конце пятой главы я уже начал было описывать живую материю в терминах энтропии.

Однако давайте не будем сосредоточиваться на тепле исключительно как на источнике работы только потому, что этим занимались на заре возникновения термодинамики. Формулировка второго закона этой науки, выдвинутая Кельвином, гласила, что тепло невозможно перевести в работу при условии отсутствия разности температур, но ведь, помимо тепла, существуют еще и другие виды энергии! Падающий камень совершает работу, несмотря на тот факт, что температура его в точности равняется как температуре вершины скалы, на которой он лежал, так и температуре подножия, на которое он падает. Важна не разность температур, а разность потенциалов энергии.

В таком случае остается установить, какую же именно энергию используют живые организмы, извлекая из нее работу. Но жизнь — слишком сложное явление, чтобы постичь его с наскоку, и для начала надо взять что-нибудь попроще.

Вернемся к тепловым машинам и зададимся вопросом: откуда берется энергия для изначального нагрева горячей камеры? Ответ прост — она получается в процессе горения. Дерево, уголь, нефтепродукты или газ сжигаются, и полученная в этом процессе энергия нагревает воду до состояния пара, что и делает возможным функционирование тепловых машин. Да, для того, чтобы запустить процесс горения, любое топливо надо сначала поджечь, но количество энергии, получаемой во время горения, во много раз больше, чем количество энергии, изначально затраченной на поджигание. Так откуда же берется эта энергия?

Это крайне важный для нас вопрос, поскольку, как я расскажу позже, достаточно давно было подмечено, что между горением угля и дыханием живых существ есть что-то общее. Казалось, что, если удастся найти источник энергии, таящейся, скажем, в холодном угле, нашедший его окажется на прямом пути к открытию источника энергии человеческого организма.

Так или иначе, давайте попробуем.


В XVIII столетии, на пике популярности теорий неуловимых флюидов, считалось, что уголь — это пример вещества полного флогистона. Считалось, что в процессе горения флогистон высвобождается и именно этот процесс и порождает выделение тепла и света, составляющих горение. Однако эта теория содержала в себе неустранимые внутренние противоречия, за что Лавуазье ее и разгромил.

Теперь требовалось новое объяснение того, каков же источник высвобождаемой при горении энергии, и до появления теории атомов этот пробел так и не был заполнен.

Ключевую подсказку к правильному ответу я уже привел в предыдущей главе, там, где упоминал эффект Джоуля—Томсона. (Напомню: газ, расширяющийся в вакууме, производит работу, поскольку молекулам при центробежном движении приходится преодолевать существующую между ними слабую силу притяжения.)

Значит, между молекулами существует сила притяжения, так же как и между небесными телами. Как существование силы гравитационного притяжения является основой для самого понятия о «потенциальной энергии», так и существование межмолекулярного притяжения является основой для некоего понятия, которое можно по аналогии назвать «химической энергией».

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука