Можно сказать так: порядок — это когда одну часть системы можно отличить от другой, а хаос — когда четкой границы нельзя провести нигде. Чем более четки различия между частями системы, тем более она упорядоченна.
Часто используемым примером упорядоченной системы является колода карт, где все карты сгруппированы по мастям и карты каждой масти расположены по старшинству. Заранее известно, что первая карта — пиковый туз, вторая — пиковый король и так далее по всем остальным мастям. Можно точно определить порядковый номер любой карты в колоде.
Если же разбивка колоды по мастям сохраняется, но в пределах каждой масти карты не расположены по старшинству, такая система уже менее упорядоченна. В отношении любой пиковой карты можно сказать только то, что она находится «где-то в первой четверти колоды», но точнее определить ее местонахождение уже невозможно.
Если же колода хорошо перетасована, то вообще ничего невозможно сказать ни об одной из карт. В этом случае мы имеем дело со «случайным распределением», то есть с хаосом.
Теперь давайте представим себе ситуацию возрастающей энтропии, например перехода тепла от горячего тела к холодному (это классический пример увеличения энтропии). По мере перетекания тепла горячее тело охлаждается, а холодное — нагревается, пока оба они не будут иметь некую среднюю температуру.
Во время этого процесса увеличивается не только энтропия, но и хаос. В частности, до начала теплопередачи оба тела (горячее и холодное) легко отличить друг от друга хотя бы по их температуре, если даже они и являются совершенно одинаковыми во всех остальных отношениях. По мере перетекания тепла от одного к другому разница между ними становится все меньше и в конце концов исчезает полностью.
Опять же, если свести вместе объем кислорода и объем водорода, температура и давление в которых равны, то они перемешаются, пока общий объем не будет содержать равномерную смесь обоих газов. Поскольку это спонтанный процесс, значит, при нем происходит возрастание энтропии. И поскольку в результате два легко различимых объекта становятся неразличимы, то, значит, хаос при этом тоже возрастает.
На самом деле в каждом конкретном случае можно провести параллели между возрастанием энтропии и возрастанием хаоса. Энтропия и хаос — это аналогичные явления.
Поскольку все спонтанные процессы подразумевают увеличение энтропии, то, значит, они подразумевают и увеличение хаоса. Странно было бы ждать, что тепло будет само по себе переходить от холодного тела к горячему, а смесь газов — сама по себе рассортировываться на составляющие.
Это утверждение справедливо и в отношении самого первого из наших примеров — колоды карт. Сложенная упорядоченным образом колода сама по себе, конечно, не перетасуется, но это лишь потому, что она вообще не будет подвергаться никаким изменениям. Но предположим, что мы создадим некие условия, при которых колода будет подвергаться неким изменениям, причем таким, которые будут определяться исключительно случайным образом. Например, если мы сбросим карты с крыши дома на мостовую. Тогда колода разлетится на отдельные карты. Если теперь эти карты собрать, не глядя на их достоинство, то в результате мы получим совершенно случайную последовательность, несмотря на то что начинали они свой полет в строгом порядке. Таким образом, мы имеем очередной спонтанный процесс, в котором возрастают и энтропия, и хаос.
Перетасовывание карт — тоже пример спонтанного процесса (в том смысле, что карты при нем распределяются случайным образом), при котором возрастают как энтропия, так и хаос. На самом деле честное перетасовывание карт случайным образом — обязательное условие для честной игры в карты.
Для того чтобы перевести колоду карт обратно из хаотичного в упорядоченное состояние, необходимо сесть и разложить ее, уделяя внимание каждой карте (то есть, в терминологии нашей первой главы, необходимо «совершить усилие», уменьшая энтропию). Глупо было бы ждать, что колода вдруг придет в упорядоченное состояние сама собой, если ее долго перетасовывать или подбрасывать в воздух.
Точнее, существует ненулевая вероятность, что перетасовывание колоды может привести к образованию где-то в ней коротенькой упорядоченной последовательности или даже длинной — ведь бывает же, что при сдаче на руках у одного играющего оказывается тринадцать пик. Это явление того же порядка, что и замерзание воды в поставленном на огонь котелке. Разница лишь в масштабах вероятности — увидеть на руках тринадцать пиковых карт вполне возможно лишь потому, что их в колоде всего пятьдесят две. Если бы карт в колоде было столько же, сколько молекул в котелке с водой, то и шансы вытащить случайным образом четверть из них так, чтобы все вытянутые карты оказались одной масти, были бы такими же ничтожными, как и увидеть замерзающую воду в котелке.