Вероятность такого события (просчитанная на основе уравнений Максвелла) настолько ничтожно мала, что даже если бы вся Вселенная состояла только из стоящих на огне чайников, то шансов дождаться, чтобы хоть один из них замерз за все время существования Вселенной, у нас все равно не было бы практически никаких.
Разница между неизменным потоком тепла и потоком, испытывающим постоянные колебания, с философской точки зрения, конечно, огромна, но с практической настолько незначительна, что Максвеллу пришлось специально изобретать способ ее хоть как-то подчеркнуть. Поэтому он придумал крошечное существо, которое с заслонкой сидит на трубе, соединяющей две камеры с газом, температура в которых сначала одинакова. Существо, выдуманное Максвеллом, занималось следующим: когда к трубе подлетала из правой камеры быстро движущаяся молекула, оно пропускало ее через трубу, а медленные — не пропускала. Из левой же камеры оно, наоборот, пропускало все медленные молекулы, а быстрые — нет. Таким образом, в левой камере собирались быстро движущиеся молекулы, и сама камера нагревалась, а в правой — медленно движущиеся, и камера остывала. Таким образом, тепло перетекало бы из холодной камеры в горячую, что для старой теории тепла было неприемлемо, а для кинетической — вполне допустимо. Это воображаемое существо было названо «демоном Максвелла», и с тех пор этот «демон» известен как идеальный борец с энтропией.
Впрочем, подобные демоны водятся не только в наших фантазиях. В реальной жизни тоже существует некий аналог «демона Максвелла». Среднестатистические свойства молекул столь близки к неизменным только потому, что при обычных обстоятельствах мы имеем дело с телами, состоящими из огромного количества молекул. По мере уменьшения количества молекул в системе шансы наткнуться на заметное отклонение от среднестатистической вероятности возрастают. Когда речь идет о действительно малых количествах, ровное единообразие полностью пропадает.
В качестве такого примера можно назвать наблюдение, которое произвел в 1827 году шотландский ботаник Роберт Броун, отметивший, что цветочная пыльца, будучи распыленной в воде, как-то странно шевелится то в одном, то в другом направлении, очевидно, случайным образом. Сначала он решил, что пыльца движется сама, поскольку в ней скрыта живая сила, но вскоре обнаружилось, что подобным образом шевелятся и любые другие маленькие предметы (например, распыленные красители). В честь первооткрывателя это явление было названо «броуновским движением».
Примерно в 1890 году Больцман продемонстрировал, что броуновское движение можно объяснить с помощью кинетической теории. Он отметил, что любой находящийся в воде предмет со всех сторон подвергается бомбардировке молекулами окружающей его воды. Статистически количество ударов, получаемых им с одной стороны, будет уравновешиваться количеством ударов, получаемых с другой, и в итоге предмет будет оставаться неподвижным.
Понятно, что точно равным количество ударов с обеих сторон не будет, но при обычных обстоятельствах это не важно, разница будет незначительна. Если с одной стороны предмет получил квинтиллион ударов, а с другой в этот же момент — квинтиллион и двенадцать, то такое неравенство останется незамеченным. Однако при уменьшении размеров находящегося в воде тела общее число ударяющих по его площади одновременно молекул тоже уменьшится, и то же самое небольшое неравенство станет ощутимее. Если взять настолько маленькое тело, что одновременно в него будут ударять лишь сто молекул с одной стороны и сто двенадцать — с другой, эти двенадцать ударов разницы, незаметные в первом случае, теперь могут оказать вполне реальное воздействие. Больцман продемонстрировал, что применительно к очень малым телам случайное движение молекул, при котором возникает перевес ударного воздействия то в одну, то в другую сторону, вполне может привести к поведению характеризуемому броуновским движением.
Таким образом, мы имеем дело со своего рода демоном Максвелла, шевелящим тела, которым по прежней теории предназначено было пребывать в неподвижном состоянии. Поскольку движения частиц строго хаотичны, то никакой направленности в долгосрочной перспективе в отношении крупных тел в них просматриваться не может.
В 1905 году Альберт Эйнштейн разработал точную математическую модель броуновского движения, а в ходе точных экспериментов 20-х и 30-х годов XX века были измерены даже скорости движения молекул в газах, и оказалось, что их распределение в точности соответствует расчетам кинетической теории.
Энтропию тоже можно рассматривать в свете кинетической теории. Однако сначала разберемся в значениях слов «порядок» и «хаос».
Интуитивно мы называем «порядком» любое положение вещей, в котором присутствует некая математическая или логическая закономерность. Если же никакой системы в положении вещей вычленить невозможно, мы называем это хаосом.