Про числа 25, 49, 100 говорят, что они являются квадратами. А почему? Потому что они получаются, если возвести числа 5, 7 и 10 в квадрат. Но имеет ли это название какое-нибудь отношение к геометрической фигуре - квадрату? Посмотрим на рис. 1. Солдаты стоят правильными рядами, образуя квадраты. Число солдат внутри такого квадрата легко подсчитать - нужно умножить их число вдоль горизонтальной стороны на число солдат вдоль вертикальной стороны (заметим, что эти числа равны), и получится общее количество солдат внутри квадрата.
Рис. 1
В древности вычислители часто считали с помощью камешков и, естественно, отмечали случаи, когда камешки можно было сложить в виде правильной фигуры. Кроме квадратных чисел были известны треугольные числа, которые получаются так, как это показано на рис. 2 в верхней его части. Нетрудно заметить, что n-е квадратное число равно
Рис. 2
Пятиугольные числа изображены на рис. 2. Чтобы сосчитать n-е пятиугольное число, его нужно разбить на три треугольных, после чего останется еще n точек, как показано на рисунке. В результате получаем, что n-е пятиугольное число равно
Подобным образом можно образовывать любые многоугольные числа. Формула для n-го k-угольного числа такова:
При
Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис. 2), а для числа 13 - лишь расположив все предметы в одну линию. Такое число древние не считали прямоугольным. Таким образом, прямоугольными числами являются все составные числа, а непрямоугольными - простые числа.
К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки. Нетрудно заметить, что n-е пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид
ФОРМУЛА
Формула комбинация математических знаков и букв, выражающая какое-либо предложение.
Например, формула синуса тройного угла (см. Угол), выражающая его через синус простого угла:
Известно много формул, связывающих между собой элементы треугольника (a, b, c - длины сторон, r и R - радиусы вписанной и описанной окружностей). Вот одна из них:
Как правило, термин «формула» употребляют по отношению к комбинациям знаков и букв, которые:
состоят из двух частей, соединенных знаком равенства;
выражают истинное при определенных условиях утверждение;
позволяют выразить некоторую величину через другие.
Особое значение термин «формула» приобретает в математической логике, где он применяется по отношению к выражениям формального языка, построенным по определенным правилам.
ФУНКЦИЯ
Функция - это одно из основных математических и общенаучных понятий, выражающее зависимость между переменными величинами.
Каждая область знаний: физика, химия, биология, социология, лингвистика и т.д. - имеет свои объекты изучения, устанавливает свойства и, что особенно важно, взаимосвязи этих объектов.
В различных науках и областях человеческой деятельности возникают количественные соотношения, и математика изучает их в виде свойств чисел. Математика рассматривает абстрактные переменные величины и в отвлеченном виде, изучает различные законы их взаимосвязи, которые на математическом языке называются функциональными зависимостями, или функциями.
Например, в соотношении y=x2
геометр или геодезист увидит зависимость площади y квадрата от величины x его стороны, а физик, авиаконструктор или кораблестроитель может усмотреть в нем зависимость силы y сопротивления воздуха или воды от скорости x движения. Математика же изучает зависимость y=x2 и ее свойства в отвлеченном виде. Она устанавливает, например, что при зависимости y=x2 увеличение x в 2 раза приводит к четырехкратному увеличению y. И где бы конкретно ни появилась эта зависимость, сделанное абстрактное математическое заключение можно применять в конкретной ситуации к любым конкретным объектам.«Поворотный пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика.» Ф. Энгельс
Понятие функции для математики и ее приложений, связанных с изучением переменных величин, столь же фундаментально, как понятие числа при изучении количественных соотношений реального мира.
Математическое описание понятия функциональной зависимости или функции состоит в следующем.