Читаем Энциклопедический словарь юного математика полностью

Работы И. Ньютона надолго определили пути развития физики и математики. Значительная часть классической механики надолго сохранилась в виде, созданном Ньютоном. Закон всемирного тяготения постепенно осознавался как единый принцип, позволяющий строить совершенную теорию движения небесных тел. Созданный им математический анализ открыл новую эпоху в математике.


------------------------------------------


Или если ψ(x) = sin x2, то, полагая f(u) = sin u, u = φ(x) = x2, получаем, что ψ(x) = f(φ(x)) и, значит, ψ'(x) = f'(u)·φ'(x) = cos u·2x = 2x cos x2.

Мы уже отмечали, что к вычислению пределов вида (3), (4), (5), т. е., как теперь можно говорить, к вычислению производной, приводили многие задачи.

Рассмотрим теперь другой классический пример уже чисто геометрического вопроса, который решается в терминах производной, - построение касательной к кривой (см. Касательная).

Требуется построить прямую T (рис. 1), касательную в точке A к кривой – графику функции y=f(x).


«Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение». Ф. Энгельс

Рис. 1

Как и в случае определения мгновенной скорости, построение касательной будет сопровождаться уточнением самого понятия касательной.

Пусть (x0,y0) - координаты точки A: как известно, любая не вертикальная прямая, проходящая через точку A, задается уравнением y = y0 + k·(x - x0),

где, k = (y-y0) / (x-x0)

так называемый угловой коэффициент прямой, характеризующий ее наклон к горизонтальной оси. В нашем случае y0 = f(x0), поэтому уравнение прямой, проходящей через точку A, имеет вид y = f(x0) + k · (x - x0), и мы хотим выбрать значение коэффициента k так, чтобы прямая была как можно лучше «подогнана» к кривой y=f(x), т. е. лучше всего приближала нашу кривую в окрестности точки A. Значит, мы хотим выбрать k так, чтобы приближенное равенство f(x) ≈ f(x0) + k · (x - x0), или, что то же самое, приближенное равенство

,

было возможно более точным при значениях x, близких к x0.

Но это знакомая ситуация и, с точностью до переобозначений x - x0 = h, x = x0 + h, это знакомое нам отношение из формулы (5), следовательно,

.   (6)

Итак, найдено уравнение

y = f(x0) + f'(x0)(x-x0)     (7)

той прямой, которая наилучшим образом приближает кривую y=f(x) в окрестности точки (x0, f(x0)). Эту прямую естественно считать искомой касательной к данной кривой в рассматриваемой точке.

Например, если взять параболу y=x2, т.е. f(x) = x2, то касательная к ней в точке (1,1) в силу (7) будет задаваться уравнением y = 1 + 2(x - 1), которое можно преобразовать к более компактному виду y = 2x - 1.

Выше мы дали физическую интерпретацию производной как мгновенной скорости, а теперь на основании уравнения касательной (7) можно дать геометрическую трактовку производной. А именно, значение f'(x0) производной f'(x) функции f(x) в фиксированной точке x = x0 есть угловой коэффициент касательной к графику функции y=f(x) в точке (x0, f(x0)).

Это, в частности, означает, что на участках изменения переменной x, на которых f'(x)>0, функция f(x) возрастает; там, где f'(x)<0, функция f(x) убывает, а в точках местных максимумов или минимумов функции ее производная должна обращаться в нуль, ибо касательная в этих точках горизонтальна. Ясно также, что если в некоторой точке x = a производная обратилась в нуль, то нельзя спешить с выводом, что это точка максимума или минимума (см. точку a4), ибо знак производной может не измениться при переходе через эту точку, и функция будет продолжать возрастать или убывать. Но если производная меняет свой знак при переходе через эту точку (см. точки a1,a2,a3), то ясно, что при x = a функция будет иметь или местный максимум, если идет смена знака с «+» на «-» (как в точках a1,a3), или местный минимум, если знаки меняются с «-» на «+» (как в точке a2).

Сделанные наблюдения о связи знака или нулей производной с характером монотонности (возрастанием, убыванием) функции или с ее экстремумами (максимумами, минимумами) имеют многочисленные применения.

Попробуем, например, проволокой данной длины огородить такой прямоугольный участок луга, чтобы получить возможно более просторный загон для скота, т.е. среди прямоугольников с заданным периметром 2p (т.е. среди изопериметрических прямоугольников) надо найти тот, который имеет наибольшую площадь.

Перейти на страницу:

Похожие книги