В наши дни с помощью ЭВМ число π вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа π (
Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон (рис. 1,а). Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника - больше. Но при этом оставалось неясным, является ли число π рациональным, т.е. отношением двух целых чисел, или иррациональным. Лишь в 1767 г. немецкий математик И. Г. Ламберт доказал, что число π иррационально, а еще через сто с лишним лет в 1882 г. другой немецкий математик - Ф. Линдеман доказал его трансцендентность (см. Число), что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.
«Возьму линейку, проведу прямую. И мигом круг квадратом обернется». Аристофан
Конечно, способов приближенного решения квадратуры круга с помощью циркуля и линейки было придумано великое множество. Так, в Древнем Египте было распространено правило: площадь круга равна площади квадрата со стороной, равной
Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали другие инструменты или специально построенные кривые. Так, в V в. до н. э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).
Квадратриса Динострата получается следующим образом. Пусть дана окружность радиуса a (рис. 1,б). Начнем вращать радиус OA с угловой скоростью
Рис. 1
При стремлении t к 1 точка M стремится к точке P, при этом абсцисса точки M стремится к нулю, а у ординаты один множитель стремится к нулю, а другой – к бесконечности. Их произведение будет стремиться к числу
Пусть теперь дана окружность радиуса r. Тогда имеем соотношение
Чрезвычайно любопытно, что квадратриса Динострата решает и вторую из знаменитых задач древности – задачу о трисекции угла. Для этого нужно отложить данный угол так, чтобы его вершина находилась в точке O, а одна из сторон совпала с лучом OA (рис. 1,г). Из точки N пересечения квадратрисы со вторым лучом угла опускаем перпендикуляр
Напомним, что в классической постановке задачи о трисекции угла такое построение требовалось произвести лишь с помощью циркуля и линейки! В 1837 г. французский математик П. Ванцель доказал, что в общем виде задача не имеет решения, а возможно такое деление лишь в нескольких исключительных случаях, в частности для угла