Читаем Энциклопедический словарь юного математика полностью

Отрицательных корней (в данном случае x = -284) китайские математики не рассматривали, хотя в этом же трактате содержатся операции с отрицательными числами.

Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принадлежит индийскому математику Брахмагупте (около 598 г.). Среднеазиатский ученый ал-Хорезми (IX в.) в трактате «Китаб аль-джебр валь-мукабала» получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации. Суть его рассуждений видна из рис. 2 (он рассматривает уравнение x2 + 10x = 39). Площадь большого квадрата равна (x + 5)2. Она складывается из площади x2 + 10x фигуры, закрашенной голубым цветом, равной левой части рассматриваемого уравнения, и площади четырех квадратов со стороной 5/2, равной 25. Таким образом,

(x+5)2 = 39 + 25; x + 5 = ±8; x1 = 3; x2 = -13.

Рис. 2

К квадратным уравнениям сводятся многие уравнения путем замены переменной. Приведем некоторые примеры.

1. Биквадратное уравнение

ax4 + bx2 + c = 0

сводится к квадратному заменой x2 переменной y.

2. Уравнение (x+1)2 - 6/(x2 + 2x) = -4 заменой y = x2 + 2x сводится к квадратному уравнению y2 + 5y - 6 = 0, корни которого y1 = 1, y2 = -6. Из двух уравнений x2 + 2x = 1 и x2 + 2x = -6 действительные решения имеет только первое: x = -1±√2.

3. Уравнения

4x - 2x+1 - 3 = 0, cos 2x = sin x + 1, lg2(x2) + lg x = 1

сводятся к квадратным заменами соответственно y = 2x, y = sin x и y = lg x.

4. Уравнение

x2/3 + 48/x2 = 10(x/3 + 4/x)

сводится к квадратному уравнению заменой

y = x/3 + 4/x (здесь x2/3 + 48/x2 = 3(x/3 + 4/x)2 - 8 = 3y2 - 8; 3y2 - 10y - 8 = 0; y1 = - 2/3, y2 = 4).

Из получаемых уравнений

x/3 + 4/x = -2/3 и x/3 + 4/x = 4

корни имеет только второе: x = 2(3±√6). Вообще, замена y = x + k/x - одна из наиболее часто встречающихся замен. Например, с помощью такой замены к квадратному уравнению (после деления обеих частей уравнения на x2) сводится уравнение вида

ax4 + bx3 + cx2 + kbx + k2a = 0.     (2)

Уравнение (2) обычно называют возвратным или обобщенно – симметрическим.

5. Однородные уравнения

9x = 6x + 2·4x и 2sin2 x + 5 sin x cos x + 2 cos2 x = 0 сводятся к квадратным уравнениям относительно y заменами соответственно y = (3/2)x и y = tg x после деления обеих частей первого уравнения на 4x, второго – на cos2x. Для второго уравнения предварительно проверяется, удовлетворяют ли уравнению те значения x, для которых cos x = 0.

6. Уравнение

x4 + (x+2)4 = 82,

«симметричное» относительно x + 1, сводится к биквадратному уравнению y4 + 6y2 = 40 заменой y = x + 1; аналогично уравнение (x+1)(x+2)(x+4)(x+5) = 40, «симметричное» относительно x + 3, сводится к биквадратному уравнению (y2 - 1)(y2 - 4) = 40 заменой y = x + 3. Отметим, что для второго уравнения годится и замена y = x2 + 6x, тогда (x+1)(x+5) = y+5; (x+2)(x+4) = y + 8.


КВАДРАТНЫЙ ТРЕХЧЛЕН


Так называют многочлен, определяемый формулой ax2+bx+c a≠0. Числа a,b и c - коэффициенты квадратного трехчлена, они обычно называются: a - старший, b - второй или средний коэффициент, c - свободный член. Функция вида y=ax2+bx+c называется квадратичной функцией.


После линейной функции квадратичная функция – простейшая и важнейшая элементарная функция. Многие физические зависимости выражаются квадратичной функцией; например, камень, брошенный вверх со скоростью v0, находится в момент времени t на расстоянии

s(t) = -(g/2) t2 + v0t

от земной поверхности (здесь g - ускорение силы тяжести); количество тепла Q, выделяемого при прохождении тока в проводнике с сопротивлением R, выражается через силу тока I формулой Q = RI2.

Простейший частный случай квадратичной функции есть функция y=ax2. На рис. 1 изображены графики функций y=ax2 при разных значениях a. График функции y=ax2 называется параболой.

Рис. 1

У всех этих парабол вершина находится в начале координат; при a > 0 это наинизшая точка графика (наименьшее значение функции), а при a < 0, наоборот, наивысшая точка (наибольшее значение функции). Ось Oy есть ось симметрии каждой из таких парабол.

Как видно, при a > 0 парабола направлена вверх, при a < 0 - вниз.

Перейти на страницу:

Похожие книги