Читаем Энциклопедический словарь юного математика полностью

Интерес к касательным не ослабевал и у математиков последующих поколений. В XVII в. французские ученые Р. Декарт и П. Ферма исследовали касательные к спиралям и циклоиде. (Заметим, что модель касательной к циклоиде можно наблюдать в дождливую погоду: циклоида – кривая, являющаяся траекторией точки на ободе катящегося колеса (рис. 1). По такой траектории движутся и капли воды, находящиеся на колесе, а оторвавшись от колеса, они продолжают двигаться уже по касательной к циклоиде (а не к окружности – ободу колеса). Такие капли образуют грязную полосу на спине велосипедиста-гонщика, мчащегося по шоссе в сырую погоду).

Рис. 1

Р. Декарт на задаче построения касательных к кривым отрабатывал свой аналитический метод в геометрии. Продолжая исследования Декарта, связанные с построением касательных с помощью аналитического метода, Г. В. Лейбниц одновременно с И. Ньютоном пришел к открытию дифференциального исчисления, явившемуся революцией в развитии математики. Понятие производной функции тесно связано с построением касательной к графику этой функции: значение производной в некоторой точке есть тангенс угла наклона касательной в этой точке к оси абсцисс.

Как все основные понятия дифференциального исчисления, понятие касательной строго определяется лишь с помощью предельного перехода (см. Предел). Касательная к кривой в точке M определяется как предельное положение секущей MN при приближении точки N по кривой к точке M (рис. 2). Нетрудно понять, что у непрерывных кривых могут быть точки, в которых касательная отсутствует (рис. 3), но чрезвычайно трудно представить себе, что существуют такие непрерывные кривые, которые не имеют касательных ни в одной своей точке.

Рис. 2

Рис. 3

Первые примеры таких функций были указаны чешским ученым Б. Больцано (1830 г., опубликовано в 1930 г.) и немецким математиком К. Вейерштрассом (1860 г., опубликовано в 1872 г.). Естественно, что функции, графиками которых являются кривые без касательных, не имеют производных ни в одной из своих точек, так как у функции f(x), имеющей в точке x0 производную, касательная к ее графику в этой точке существует и записывается уравнением y = f(x0) + f'(x0)(x-x0) .

Понятие касательной применяется и для определения угла между кривыми в точке их пересечения. За такой угол принимается угол между касательными к кривым в этой точке. На рис. 4 изображено два семейства кривых – эллипсы и гиперболы, фокусы которых находятся в заданных точках F1 и F2. Любые две кривые разных семейств здесь пересекаются под прямым углом. Такая картина часто встречается в физике, в частности эти кривые являются линиями равной напряженности и равного потенциала, если в точках F1 и F2 находятся заряды разного знака.

Рис. 4

Аналогично касательной к кривой определяется касательная плоскость к поверхности (рис. 5), она играет по отношению к поверхности ту же роль, что и касательная к кривой.

Рис. 5

КВАДРАТНОЕ УРАВНЕНИЕ


Квадратным называют алгебраическое уравнение 2-й степени, т.е. уравнение вида

ax2+bx+c=0, где a ≠ 0.     (1)

Выражение D = b2 - 4ac называют дискриминантом квадратного трехчлена ax2 + bx + c.

Уравнение (1) имеет два корня:

.

При этом если D > 0, то корни действительные и различные, при D=0 корни совпадают (говорят, что уравнение имеет корень кратности два), при D < 0 корни комплексные (комплексно сопряженные).

Для приведенного квадратного уравнения

x2 + px + q = 0

формула корней имеет вид

,

а для уравнения ax2 + 2bx + c = 0 (с четным коэффициентом при x) – вид

.

Для коэффициентов и корней квадратного уравнения (1) выполняются соотношения:

Эти соотношения называют теоремой Виета, по имени французского математика Ф. Виета (1540-1603).

Особенно удобна эта теорема для приведенного квадратного уравнения:

x1 + x2 = -p, x1x2 = q.

Уравнения 2-й степени умели решать еще в Древнем Вавилоне во II тысячелетии до н. э. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид – при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. Приведем задачу из китайского трактата «Математика в девяти книгах» (приблизительно II в. до н.э.).

«Имеется город с границей в виде квадрата со стороной неизвестного размера, в центре каждой стороны находятся ворота. На расстоянии 20 бу (1 бу = 1,6 м) от северных ворот (вне города) стоит столб. Если пройти от южных ворот 14 бу прямо, затем повернуть на запад и пройти еще 1775 бу, то можно увидеть столб. Спрашивается: какова сторона границы города?» Обозначим сторону квадрата через x. Из подобия треугольников BED и ABC (рис. 1) получим

.

Рис. 1

Поэтому, чтобы определить неизвестную сторону квадрата, получаем квадратное уравнение

x2 + (k+l)x - 2kd = 0.

В данном случае уравнение имеет вид

x2 + 34x - 71000 = 0,

откуда x = 250 (бу).

Перейти на страницу:

Похожие книги