Читаем Энциклопедический словарь юного математика полностью

Можно ли аналогичным образом преобразовывать криволинейные фигуры? Кавальери представляет их себе состоящими из бесконечно тонких параллельных плоских слоев - «неделимых» или «нитей» (рис. 1) и утверждает, что площадь не меняется при сдвигах этих слоев друг относительно друга. Иначе, принцип Кавальери состоит в том, что если пересечь фигуру семейством всех прямых, параллельных заданной, то длины пересечений полностью определят площадь фигуры. В частности, если у двух фигур эти длины совпадают, то они равновелики. Строгого обоснования своего принципа Кавальери не дал, но рассмотрел его многочисленные применения. Например, на основе этого принципа легко получается равновеликость треугольников с равными основаниями и высотами. Одно из самых удивительных применений принципа Кавальери принадлежит французскому математику Ж. Робервалю (1602-1675), который нашел площадь сегмента, ограниченного одной аркой циклоиды (см. Циклоида). В каждый момент времени Роберваль проектировал точку, двигающуюся по циклоиде, на вертикальный диаметр катящегося круга. Получалась новая кривая, которую Роберваль назвал спутницей циклоиды (рис. 2, а). Но потом выяснилось, что это синусоида, и это было первое (1634) появление ее в математике!

Рис. 1

Рис. 2

Площадь под аркой синусоиды легко вычисляется при помощи перехода к равносоставленному с ней прямоугольнику площадью 2π (рис. 2,б). Каждая из оставшихся двух фигур, которые называли лепестками Роберваля, по принципу Кавальери равновелика вертикальному полукругу, т.е. общая площадь равна 3π.

Еще более эффективен принцип Кавальери при нахождении объемов тел. Он состоит в том, что объем тела определяется площадями его пересечений «всеми плоскостями», параллельными некоторой заданной. Отсюда следует теорема о равновеликости пирамид с равновеликими основаниями и равными высотами, а эти пирамиды, как правило, не равносоставлены (см. Равносоставленные и равновеликие фигуры). На этой теореме основывается формула для объема пирамиды. Очень удобен принцип Кавальери и для получения формул объемов круглых тел, скажем шара. Впишем в круговой цилиндр радиусом r и высотой 2r шар. Тело, являющееся дополнением шара до цилиндра, по принципу Кавальери равновелико телу, составленному из двух конусов, построенных на верхнем и нижнем основаниях цилиндра с вершиной в центре шара. Отсюда следует, что V = 4/3 πr3.

Интегральное исчисление содержит общие методы для вычисления площадей и объемов, причем там, где применение принципа Кавальери требовало нестандартных построений, к успеху приводят стандартные вычисления, и постепенно принцип Кавальери отошел в область истории. Однако, поскольку по принципу Кавальери легко вычисляются все «школьные» объемы и площади, неоднократно предлагалось принять принцип Кавальери в школьной геометрии за аксиому. Этот материал можно найти в школьных учебниках.


КАЛЕНДАРЬ


Исчисление времени, казалось бы, не таит в себе никаких проблем. Сутки следуют за сутками, год за годом. Но что такое год? Это время, за которое Земля совершает по своей орбите полный оборот вокруг Солнца. Астрономы подсчитали, что год составляет 365 сут 5 ч 48 мин 46 с или 365,242199 сут. Но пользоваться таким сложным числом очень неудобно. Хотелось бы, чтобы в году было целое число суток. Предположим, что продолжительность года равна 365 дням. Но тогда окончание каждого года приходилось бы всякий раз на новую точку на орбите, отстоящую от предыдущей на величину, которую Земля проходит примерно за 6 ч. Какой же из этого выход? Древнеримские жрецы, ведавшие исчислением времени, произвольно удлиняли некоторые года, чтобы согласовать календарные даты с сезонными явлениями природы. Впервые порядок в счете времени навел в I в. до н.э. римский император Юлий Цезарь. Он постановил считать одни годы по 365 суток, а другие по 366, чередуя их по правилу: три года подряд коротких, четвертый – длинный. Такую систему предложил ему александрийский астроном Созиген, которого Юлий Цезарь пригласил в Рим специально для создания календаря. Гораздо позже, с введением христианского летосчисления, високосным стали считать каждый год, порядковый номер которого делится на 4.


Этот календарь в честь Юлия Цезаря называется юлианским. По нему средняя продолжительность года составляет 365 сут 6 ч, что больше истинной лишь на 11 мин 14 с. Однако и это решение оказалось неудовлетворительным. К XVI в. ошибка, накапливаясь, составила уже около 10 сут.

Перейти на страницу:

Похожие книги