Читаем Энциклопедический словарь юного математика полностью

Таким образом, интеграл (11) с переменным верхним пределом x дает нам первообразную функции f(x). Среди всех прочих первообразных функции f(x) на отрезке [a;b] эта первообразная выделяется очевидным условием 𝓕(a) = 0. Поскольку интеграл, согласно его определению (6'), можно вычислить с любой наперед заданной точностью, то и значение 𝓕(x) первообразной (11) функции f(x) в любой точке x ∈ [a;b] можно найти сколь угодно точно, даже не интересуясь при этом аналитической записью 𝓕(x) или вопросом о том, является ли 𝓕(x) элементарной функцией.

Существуют простые и очень эффективные численные методы интегрирования – это так называемые квадратурные формулы. Они позволяют на электронных вычислительных машинах за доли секунды получать значения определенных интегралов. Это обстоятельство делает формулу (11) средством отыскания первообразной. Например, современные подводные лодки порой месяцами находятся на большой глубине и перемещаются на огромные расстояния; не имея никакой связи с внешним миром, они тем не менее выходят в точно заданный квадрат. Навигационное оборудование, которое позволяет определять координаты лодки в любой момент, является технической реализацией формулы (11) и основано на таком физическом принципе. Находясь в закрытом движущемся помещении (хорошо звукоизолированном мягком вагоне, самолете и т.д.), мы не ощущаем скорости движения, но зато определенно чувствуем изменение скорости – ускорение. Оно положительно при увеличении скорости, когда масса вдавливает вас в самолетное кресло, и отрицательно при торможении, когда вам могут пригодиться даже пристяжные ремни. Поскольку между ускорением a массы m и вызывающей его силой F имеется прямая пропорциональная зависимость F=ma, величину a ускорения можно объективно измерять, закрепив массу m на свободном конце пружинки, расположенной вдоль направления движения, и соединив жестко второй ее конец, например, с задней стенкой движущегося помещения. Если растяжение и сжатие пружины пропорционально действующей на нее силе, то по величине отклонения массы m от положения равновесия можно узнавать величину a(t) ускорения, происходящего в данном направлении в любой момент времени t.

Если движение начиналось с нулевой начальной скоростью, то, зная a(t), можно по формуле (11) найти сначала скорость v(t) движения, а зная v(t), найти и перемещение s(t) в этом направлении к моменту t, поскольку

, а .

Обработка показаний приборов и вычисление этих интегралов выполняется электронной вычислительной машиной. Если есть три датчика ускорения, удерживаемых (например, гироскопами) в трех взаимно перпендикулярных направлениях, то вы можете в любой момент знать ваше перемещение по каждому из указанных направлений и тем самым определить все три ваши координаты в некоторой системе координат, началом которой является точка старта – база, аэродром, космодром.


КАВАЛЬЕРИ ПРИНЦИП


В XVII в. началась эпоха интегрального исчисления. Математики возвращались к задачам о вычислении площадей криволинейных фигур и объемов «кривых» тел, которыми так успешно занимался в древности Архимед.


Интересовался этим вопросом и итальянский монах Бонавентура Кавальери (1598-1647). Он занимал кафедру математики в Болонском университете. В переписке с астрономом и математиком Г. Галилеем они обсуждали разнообразные механические и математические проблемы, и в частности метод «неделимых». Галилей собирался, но так и не написал книгу об этом методе. В 1635 г. вышла книга Кавальери «Геометрия, изложенная новым способом при помощи неделимых частей непрерывных величин».

При вычислении площадей многоугольников бывает полезно преобразовывать фигуры, не меняя их площадей, например разрезать на части и составлять новые (см. Равносоставленные и равновеликие фигуры). Так можно преобразовать друг в друга треугольники с равными основаниями и высотами.

Перейти на страницу:

Похожие книги