Читаем Энциклопедический словарь юного математика полностью

Научное наследие Эйлера поражает своим объемом и разносторонностью. В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома. Среди его работ – первые учебники по дифференциальному и интегральному исчислению.

В теории чисел Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4 (см. Ферма великая теорема). Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.

Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих n, и наметил утверждение, которое затем докажут в XIX в. математики П. Л. Чебышев и Ж. Адамар.

Эйлер много работает в области математического анализа. Здесь он постоянно пользуется комплексными числами. Его имя носит формула eix = cos x + i sin x, устанавливающая связь тригонометрических и показательной функций, возникающую при использовании комплексных чисел.

Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма.

В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку – топологию.

Имя Эйлера носит формула, связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника: B - P + Г = 2.

Даже основные результаты научной деятельности Эйлера трудно перечислить. Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами. У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки. Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердой точки или твердой пластины.

Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой. Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца. Это пример решения очень трудной задачи.

Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения. Но он продолжал творить так же интенсивно, как в молодые годы. Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.

Для многих поколений математиков Эйлер был учителем. По его математическим руководствам, книгам по механике и физике училось несколько поколений. Основное содержание этих книг вошло и в современные учебники.


------------------------------------------


Итак, определены важнейшие понятия интегрального исчисления и получена формула Ньютона-Лейбница, связывающая интегрирование и дифференцирование.

Подобно тому как в дифференциальном исчислении к понятию производной вела не только задача определения мгновенной скорости движения, но и задача проведения касательной, так в интегральном исчислении к понятию интеграла приводит не только физическая задача определения пройденного пути по заданной скорости движения, но и многие другие задачи, и в их числе древние геометрические задачи о вычислении площадей и объемов.

Пусть требуется найти площадь S изображенной на рис. 1 фигуры aABb (называемой криволинейной трапецией), верхняя «сторона» AB которой есть график заданной на отрезке [a;b] функции y=f(x). Точками a = x0 < x1 <...n = b разобьем отрезок [a;b] на мелкие отрезки [xi-1;xi], в каждом из которых фиксируем некоторую точку ξ ∈ [xi-1; xi]. Площадь узкой криволинейной трапеции, лежащей над отрезком [xi-1;xi], заменим приближенно площадью f(ξi)(xi - xi-1) = f(ξi)Δxi  соответствующего прямоугольника с основанием [xi-1;xi] и высотой f(ξi). В таком случае приближенное значение площади S всей фигуры aABb даст знакомая нам интегральная сумма , а точное значение искомой площади S получится как предел таких сумм, когда длина Δ наибольшего из отрезков [xi-1;xi] разбиения стремится к нулю. Таким образом, получаем:

.    (8)

Рис. 1

Попробуем теперь вслед за Архимедом выяснить, в каком отношении парабола y=x2 делит площадь изображенного на рис. 2 единичного квадрата. Для этого попросту вычислим, исходя из формулы (8), площадь S нижнего параболического треугольника. В нашем случае [a;b] = [0;1] и f(x) = x2. Нам известна первообразная F(x) = x3/3 функции f(x) = x2, значит, можно воспользоваться формулой (7') Ньютона-Лейбница и без труда получить

.

Следовательно, парабола делит площадь квадрата в отношении 2:1.

Рис. 2

Перейти на страницу:

Похожие книги