Научное наследие Эйлера поражает своим объемом и разносторонностью. В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома. Среди его работ – первые учебники по дифференциальному и интегральному исчислению.
В теории чисел Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4 (см. Ферма великая теорема). Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.
Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих
Эйлер много работает в области математического анализа. Здесь он постоянно пользуется комплексными числами. Его имя носит формула eix
= cos x + i sin x, устанавливающая связь тригонометрических и показательной функций, возникающую при использовании комплексных чисел.Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма.
В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку – топологию.
Имя Эйлера носит формула, связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника: B - P + Г = 2.
Даже основные результаты научной деятельности Эйлера трудно перечислить. Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами. У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки. Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердой точки или твердой пластины.
Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой. Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца. Это пример решения очень трудной задачи.
Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения. Но он продолжал творить так же интенсивно, как в молодые годы. Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.
Для многих поколений математиков Эйлер был учителем. По его математическим руководствам, книгам по механике и физике училось несколько поколений. Основное содержание этих книг вошло и в современные учебники.
------------------------------------------
Итак, определены важнейшие понятия интегрального исчисления и получена формула Ньютона-Лейбница, связывающая интегрирование и дифференцирование.
Подобно тому как в дифференциальном исчислении к понятию производной вела не только задача определения мгновенной скорости движения, но и задача проведения касательной, так в интегральном исчислении к понятию интеграла приводит не только физическая задача определения пройденного пути по заданной скорости движения, но и многие другие задачи, и в их числе древние геометрические задачи о вычислении площадей и объемов.
Пусть требуется найти площадь S изображенной на рис. 1 фигуры
Рис. 1
Попробуем теперь вслед за Архимедом выяснить, в каком отношении парабола y=x2
делит площадь изображенного на рис. 2 единичного квадрата. Для этого попросту вычислим, исходя из формулы (8), площадь S нижнего параболического треугольника. В нашем случаеСледовательно, парабола делит площадь квадрата в отношении 2:1.
Рис. 2