Читаем Энциклопедический словарь юного математика полностью

Полезно иметь в виду также следующие очевидные соотношения, непосредственно вытекающие из определений первообразной, производной, дифференциала и из соотношения (1) для неопределенного интеграла:

(∫f(x)dx)' = f(x), d(∫f(x)dx) = f(x)dx, ∫F'(x)dx = F(x) + C, ∫dF(x) = F(x) + C.

Отыскание первообразной часто облегчают некоторые общие свойства неопределенного интеграла:

∫cf(x)dx = c∫f(x)dx

(вынесение постоянного множителя);

∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx

(интегрирование суммы); если

∫f(x)dx = F(x) + C,

то

∫f(φ(t))φ'(t)dt = F(φ(t)) + C

(замена переменной).

Эти соотношения также проверяются непосредственно с использованием соответствующих правил дифференцирования.

Найдем закон движения свободно падающего в пустоте тела, исходя из единственного факта, что при отсутствии воздуха ускорение g свободного падения вблизи поверхности Земли постоянно и не зависит от особенностей падающего тела. Фиксируем вертикальную координатную ось; направление на оси выберем в сторону к Земле. Пусть s(t) - координата нашего тела в момент t. Нам известно, таким образом, что s"(t) = g и g - постоянная. Требуется найти функцию s(t) - закон движения.

Поскольку g = v'(t), где v(t) = s'(t), то, последовательно интегрируя, находим

(2)

Итак, мы нашли, что

s(t) = gt2/2 + C1t + C2,      (3)

где C1 и C2 - какие-то постоянные. Но падающее тело подчиняется все-таки одному конкретному закону движения, в котором уже нет никакого произвола. Значит, есть еще какие-то условия, которые мы пока не использовали; они позволяют среди всех «конкурирующих» законов (3) выбрать тот, который соответствует конкретному движению. Эти условия легко указать, если разобраться в физическом смысле постоянных C1 и C2. Если сравнить крайние члены соотношения (2) при t=0, то выяснится, что C1 = v(0), а из (3) при t=0 получается, что C2 = s(0). Таким образом, математика сама напомнила нам, что искомый закон движения

s(t) = gt2/2 + v0t + s0

вполне определится, если указать начальное положение s0 = s(0) и начальную скорость v0 = v(0) тела. В частности, если v0 = 0 и s0 = 0, получаем s(t) = gt2/2.

Отметим теперь, что между операцией нахождения производной (дифференцированием) и операцией отыскания первообразной (неопределенным интегрированием) имеется, кроме указанного выше, еще целый ряд принципиальных отличий. В частности, следует иметь в виду, что если производная любой комбинации элементарных функций сама выражается через элементарные функции, т.е. является элементарной функцией, то первообразная элементарной функции уже не всегда является функцией элементарной. Например, первообразная

элементарной функции sin x/x (называемая интегральным синусом и обозначаемая специальным символом si(x)), как можно доказать, не выражается в элементарных функциях. Таким образом, принципиальный математический вопрос о существовании первообразной у наперед заданной функции не надо смешивать с не всегда разрешимой задачей об отыскании этой первообразной среди элементарных функций. Интегрирование часто является источником введения важных и широко используемых специальных функций, которые изучены ничуть не хуже таких «школьных» функций, как x2 или sin x, хотя и не входят в список элементарных функций.

Наконец, отметим, что отыскание первообразной, даже когда она выражается в элементарных функциях, скорее напоминает искусство, чем канонический алгоритм вычислений, подобный алгоритму дифференцирования. По этой причине найденные первообразные наиболее часто встречающихся функций собраны в виде справочных таблиц неопределенных интегралов. Следующая микротаблица такого рода, очевидно, равносильна микротаблице производных соответствующих основных элементарных функций:

Мы, пока говорили об обращении операции дифференцирования, пришли в этой связи к понятиям первообразной, неопределенного интеграла и дали первоначальное определение этих понятий.

Теперь укажем иной, куда более древний подход к интегралу, который послужил основным первоначальным источником интегрального исчисления и привел к понятию определенного интеграла или интеграла в собственном смысле этого слова. Этот подход четко прослеживается уже у древнегреческого математика и астронома Евдокса Книдского (примерно 408-355 до н.э.) и Архимеда, т.е. он возник задолго до появления дифференциального исчисления и операции дифференцирования.

Вопрос, который рассматривали Евдокс и Архимед, создав при его решении «метод исчерпывания», предвосхитивший понятие интеграла – это вопрос о вычислении площади криволинейной фигуры. Ниже мы рассмотрим этот вопрос, а пока поставим, вслед за И. Ньютоном, следующую задачу: по известной в любой момент t из промежутка времени a ≤ t ≤ b скорости v(t) тела найти величину перемещения тела за этот промежуток времени.

Перейти на страницу:

Похожие книги