Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток – на второй и т.д. Последний ненулевой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.
Обозначив исходные числа через a и b, положительные остатки, получающиеся в результате делений, через r1
,r2,...rn, а неполные частные через q1,q2,...qn+1, можно записать алгоритм Евклида в виде цепочки равенств:a=bq1
+r1b=r1
q2+r2......................
rn-2
=rn-1qn+rnrn-1
=rnqn+1 Приведем пример. Пусть a=777, b=629. Тогда 777=629·1+148, 629=148·4+37, 148=37·4. Последний ненулевой остаток 37 и есть наибольший общий делитель чисел 777 и 629.Для нахождения наибольшей общей меры двух отрезков поступают аналогично. Операцию деления с остатком заменяют ее геометрическим аналогом: меньший отрезок откладывают на большем столько раз, сколько возможно; оставшуюся часть большего отрезка (принимаемую за «остаток от деления») откладывают на меньшем отрезке и т.д. Если отрезки a и b соизмеримы, то последний ненулевой остаток даст наибольшую общую меру этих отрезков. В случае несоизмеримых отрезков получаемая последовательность ненулевых остатков будет бесконечной.
Рассмотрим пример. Возьмем в качестве исходных отрезков стороны AB и AC равнобедренного треугольника ABC, у которого
Алгоритм Евклида известен издавна. Ему уже более 2 тыс. лет. Этот алгоритм сформулирован в «Началах» Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного и т.д. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида (иногда называемый методом попеременного вычитания) был известен еще пифагорейцам. К середине XVI в. алгоритм Евклида был распространен на многочлены от одного переменного. В дальнейшем удалось определить алгоритм Евклида и для некоторых других алгебраических объектов.
Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший общий делитель d чисел a и b в виде d=ax+by (x,y - целые числа), а это позволяет находить решения диофантовых уравнений 1-й степени с двумя неизвестными. Алгоритм Евклида является средством для представления рационального числа в виде цепной дроби (см. Календарь). Он часто используется в программах для электронных вычислительных машин.
ЕДИНИЦА
Единица – это первое число натурального ряда, а также одна из цифр в десятичной системе счисления.
Считается, что обозначение единицы любого разряда одним и тем же знаком (довольно близким современному) появилось впервые в Древнем Вавилоне приблизительно за 2 тыс. лет до н.э.
Древние греки, считавшие числами лишь натуральные числа, рассматривали каждое из них как собрание единиц. Самой же единице отводилось особое место: она числом не считалась. (Это заставляло, например, Евклида отдельно доказывать свойства пропорций в случае, когда один из членов пропорции равен единице.)
Но уже И. Ньютон писал: «...под числом мы понимаем не столько собрание единиц, сколько отвлеченное отношение одной величины к другой величине, условно принятой нами за единицу». Таким образом, к тому времени единица уже заняла свое законное место среди других чисел.
Основное свойство, характеризующее число 1, таково: a·1=a для любого числа a.
Это свойство числа 1 переносится и на некоторые другие математические объекты, для которых определена операция умножения (см. Группа).
ЗНАКИ МАТЕМАТИЧЕСКИЕ
Знаки математические – условные обозначения, которые служат для записи математических понятий, предложений, соотношений. Развитие системы обозначений в математике было тесно связано с общим развитием ее понятий и методов.
В процессе становления математических наук возникала необходимость в точных, ясных и сжатых формулировках, требовалось устранить громоздкость словесных описании математических фактов, многозначность в математических выражениях.
Первыми математическими знаками были цифры. В работах древнегреческих математиков, например в «Началах» Евклида, отрезки и другие геометрические объекты обозначались буквами. Зачатки буквенного обозначения величин появились в III в., когда Диофант ввел обозначения для неизвестной величины и ее степеней, предложил особые знаки для операции вычитания и для обозначения равенства. Буквенные обозначения для неизвестных применяли индийские математики в VII в., однако создание развернутого буквенного исчисления относится к XIV-XVII вв. В конце XV в. француз Н. Шюке и итальянец Л. Пачоли впервые написали знаки сложения и вычитания