Читаем Энциклопедический словарь юного математика полностью

Но в математику эти приемы проникают не сразу: по-видимому, еще Демокрит, живший в V-IV вв. до н. э., обходился без доказательств. В IV в. до н.э. логика завоевывает математику. Несомненно, на первых порах доказательство – это логическое сведение неочевидных утверждений к очевидным или уже известным.

Наши современники не могут точно воссоздать картину, как появилась идея максимально ограничить число очевидных утверждений (аксиом), об истинности которых заключается соглашение и из которых остальные утверждения выводятся чисто логически (см. Аксиоматика и аксиоматический метод). В «Началах» Евклида (III в. до н.э.) грандиозная программа аксиоматизации геометрии уже полностью решена. По правилам Евклида доказательства должны быть чисто логическими выводами из аксиом. Окончательные геометрические тексты тщательно оберегались от дополнительных апелляций к очевидности. Прокл Диадох (V в.), первый комментатор Евклида, писал: «...мы научились от самих пионеров этой науки совсем не принимать в расчет правдоподобные заключения, когда дело касается рассуждений, которые должны войти в науку геометрии». Тем временем Аристотель проводит формализацию и каталогизацию правил умозаключений. Его утверждение об их конечности и обозримости не менее поразительно, чем утверждение о конечности множества аксиом. Полнота этих двух каталогов не оспаривалась до XIX в.

Правила, которыми мы пользуемся при логических рассуждениях (доказательствах), не выходят за пределы простых логических операций. Утверждение, справедливое для некоторого множества (скажем, всех параллелограммов), справедливо и для его подмножества (например, прямоугольников). Если справедливы утверждения A и из A следует B, то справедливо B. При доказательстве теоремы, имеющей вид «из A следует B» (A - то, что дано, B - то, что требуется доказать), при помощи уже известных нам теорем выводятся разные следствия, которые затем комбинируются, и из их комбинаций делаются новые выводы, пока в результате не получится B.

При доказательстве методом от противного теоремы «из A следует B» из справедливости утверждения A и отрицания утверждения B выводится справедливость пары противоположных утверждений, например, достаточно доказать отрицание утверждения A или утверждения B. Вспомним одно из классических доказательств от противного – доказательство Евклида бесконечности множества простых чисел. Если предположить, что множество простых чисел конечно и p1,p2,...,pk - их полный набор, то число p1... pk + 1 не может быть составным, так как оно не делится ни на одно из простых чисел pj, но оно не может быть и простым, так как оно больше каждого pk.

Существуют и другие способы установления справедливости математических утверждений. Так, у Архимеда большинство его замечательных утверждений о площадях криволинейных фигур и объемах тел было получено первоначально при помощи чисто механических рассуждений с центрами тяжести, равновесием рычагов и т.д. В дальнейшем появилось большое число «механических» доказательств геометрических утверждений. Вот одно из самых изящных. Из внутренней точки многогранника на его грани опускаются перпендикуляры. Надо доказать, что хотя бы для одной грани перпендикуляр придется на саму грань, а не на ее продолжение. «Механическое» рассуждение состоит в следующем. Изготовляется массивный многогранник с неравномерной плотностью, у которого центр тяжести находится в заданной точке. Если все перпендикуляры попадут на продолжения граней, то многогранник не сможет стоять ни на одной грани, и мы получим вечный двигатель. Можно ли считать это рассуждение доказательством? С точки зрения, принятой в геометрии, разумеется, нет. Более того, нет никаких формальных способов преобразовывать «механические» доказательства в геометрические. Архимед справился с этой задачей, он дал геометрические доказательства к найденным им фактам.

Доказательство теоремы, как правило, не несет никакой информации о том, как к этой теореме можно на самом деле прийти. Одним из немногих великих математиков, допускавших посторонних в свою творческую лабораторию, был Л. Эйлер. Тексты Эйлера дают нам возможность проследить за ходом его мысли. Например, он рассматривает бесконечный ряд

.

Далее, используя, что sin x/x = 0 при x=kπ, Эйлер применяет к ряду теорему о разложении на линейные множители, как если бы это был многочлен:

.

Перейти на страницу:

Похожие книги