Читаем Энциклопедический словарь юного математика полностью

Раскрывая скобки и вычисляя коэффициент при x2, получаем π2/6=1+1/4+1/9+1/16+...+1/n2+... . Разумеется, Эйлер понимал, что его смелое рассуждение доказательством не является. Он ищет косвенные подтверждения: вычисляет с большим числом знаков левую и правую части полученного соотношения, получает другие аналогичные соотношения и в их числе уже доказанное Лейбницем: π/4=1-1/3+1/5-1/7+... . У него появляется уверенность в правильности своего рассуждения, хотя он еще не в состоянии проводить эквивалентные строгие доказательства. Эйлер энергично использует свой прием для открытия новых фактов. Умение открывать новые факты в виде гипотез, умение исследовать гипотезы на правдоподобность, как и умение проводить строгие доказательства, важнейшие компоненты математического творчества.

С XVII в. математики начинают осознавать, что, в отличие от представителей других наук, они имеют надежный способ установления истины – доказательство. С этим связаны многочисленные попытки перенести доказательства за пределы математики. И. Ньютон строит механику на аксиомах по образцу «Начал» Евклида. Нидерландский философ-материалист XVII в. Б. Спиноза аксиоматизирует этику. Начиная с французского математика и физика П. С. Лапласа (1749-1827) многие пытались внедрить математические рассуждения в юридическую практику. Делались бесконечные попытки решить проблемы человеческих отношений при помощи математики. Но, конечно же, в самой математике доказательства стали играть важнейшую роль.

К началу нашего века аксиоматический метод выходит за пределы геометрии. Большинство фактов о числах, известных со времен Пифагора, носило характер частных наблюдений над конкретными числами, а не обобщающих теорем. В XVI в. теоремы появились в алгебре (у Дж. Кардано), в XVII в. – в теории чисел (у П. Ферма). Однако здесь математики не имели дело с аксиоматическими теориями и понимание доказательства находилось на доевклидовом уровне, когда набор исходных утверждений не фиксируется. В XIX в. начинается аксиоматизация всей математики. На новом уровне формализуются и перечисляются правила вывода – перехода от одних утверждений к другим. Это позволило доказать, что некоторые утверждения невыводимы из аксиом. Всеобщее удивление вызвало рассуждение немецкого математика К. Геделя о том, что в арифметике и вообще во всякой содержащей ее аксиоматической теории существует такая теорема, что ни она сама, ни ее отрицание невыводимы из аксиом.


ДРОБНО-ЛИНЕЙНАЯ ФУНКЦИЯ


Эта функция представляет собой частное двух линейных функций и задается формулой:

y = (ax + b) / (cx + d).   (1)

Дробно-линейная функция сводится к линейной функции при c=0 и к постоянной при ad=bc.

Особенно важен частный случай дробно-линейной функции при a=d=0, так как он выражает закон обратной пропорциональной зависимости:

y = k/x.   (2)

Обратная пропорциональная зависимость связывает, например, давление газа p и его объем v при постоянной температуре, так как по закону Бойля-Мариотта pv = const. В случае равномерного движения при прохождении заданного пути s время движения t обратно пропорционально скорости v, т.е. t=s/v.

Графики функций y=k/x при различных значениях k изображены на рис. 1: сплошной линией при k>0 и пунктирной при k<0. Все эти кривые называются равнобочными гиперболами, они стремятся к оси Ox при неограниченном возрастании и убывании аргумента x и стремятся к оси Oy при стремлении x слева или справа к нулю.

Рис. 1

График общей дробно-линейной функции (1) получается из графика функции y=k/x при помощи параллельного переноса. На рис. 2 приведен график функции

y = (2x + 3) / (x - 1).

Рис. 2

Эта функция представима в виде

y = 2 + 5 / (x - 1),

и легко понять, что ее график получается параллельным переносом из равнобочной гиперболы y=5/x и заключен между прямыми x=1 и y=2, к которым неограниченно приближается.


ЕВКЛИД И ЕГО «НАЧАЛА»


В течение двух тысяч лет геометрию узнавали либо из «Начал» Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Аполлония – и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX в. «неевклидовых геометрий».


Об этом поразительном человеке история сохранила настолько мало сведений, что нередко высказываются сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V в. н.э., - первый серьезный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея I, который царствовал с 306 по 283 г. до н.э.

Перейти на страницу:

Похожие книги