Древнегреческие математики считали «настоящими» только натуральные числа, но в практических расчетах за два тысячелетия до н.э. в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками за два века до н.э. Отрицательные числа применял в III в. н.э. древнегреческий математик Диофант, знавший уже правила действий над ними, а в VII в. н.э. эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII в. н.э. было установлено, что квадратный корень из положительного числа имеет два значения – положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа
В XVI в. в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений (см. Алгебраическое уравнение) содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения x3
+ 3x - 4 = 0), а если оно имело три действительных корня (например, x3 - 7x + 6 = 0), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим трем корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.«Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают все более и более широкое распространение». Ф. Клейн
Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений
В течение XVII в. продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование.
Постепенно развивалась техника операций над комплексными числами. На рубеже XVII и XVIII вв. была построена общая теория корней n-й степени сначала из отрицательных, а потом из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707)
С помощью этой формулы можно также вывести равенства для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 г. замечательную формулу
которая связывала воедино показательную функцию с тригонометрическими. С помощью формулы Эйлера можно возводить число e в любую комплексную степень. Любопытно, например, что
«Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств». П. Карно
В конце XVIII в. французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще ранее швейцарский математик Я. Бернулли применил комплексные числа для вычисления интегралов.
Хотя в течение XVIII в. с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т.д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведения, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами.