Читаем Эпигенетика полностью

Значение хроматиновой матрицы, способной реализовать генетическую информацию, заключается в том, что она обеспечивает многомерность уровней считывания информации с ДНК. Возможно, это действительно необходимо, учитывая огромные размеры и сложность эукариотического генома, особенно у многоклеточных организмов (см. детали в разделе 11). У таких организмов оплодотворенное яйцо претерпевает развитие, начиная с единичного генома, который становится эпигенетически запрограммированным на образование множества различных «эпигеномов» в более чем 200 разных типов клеток (рис. 3.4). Было высказано предположение, что эта запрограммированная изменчивость составляет некий «эпигенетический код», существенно расширяющий информационный потенциал генетического кода (Strahl and Allis, 2000; Turner, 2000; Jenuwein and Allis, 2001). Несмотря на всю привлекательность этой гипотезы, мы подчеркиваем, что для ее проверки и проверки других соблазнительных теорий требуется еще поработать. Выдвигаются и альтернативные точки зрения, согласно которым в гистонах чисто комбинаторные «коды», подобные триплетному генетическому коду, мало вероятны или, во всяком случае, далеко еще не установлены (Schreiber and Bernstein, 2002; Henikoff, 2005). Несмотря на такую неопределенность, мы склоняемся к общему мнению, что комбинация ковалентных и нековалентных механизмов действует таким образом, что создаются состояния хроматина, которые могут матрицироваться [be templated] при клеточных делениях и в процессе развития с помощью механизмов, которые только еще начинают выясняться. Вопрос о том, каким именно образом эти измененные состояния хроматина надежно воспроизводятся при репликации ДНК и в митозе, остается одной из фундаментальных проблем для будущих исследований.

Рис. 3.4. ДНК vs. хроматин

Геном: инвариантная нуклеотидная последовательность ДНК (зеленая двойная спираль) особи. Эпигеном: общий состав хроматина, индексирующий весь геном в любой данной клетке. Он варьирует в зависимости от типа клетки и реакции на внутренние и внешние сигналы, которые он получает. (Нижняя часть рисунка) эпигеномная диверсификация у многоклеточных организмов происходит в ходе развития по мере того, как дифференцировка прогрессирует от единичной стволовой клетки (оплодотворенный эмбрион) к более коммитированным клеткам. Реверсия дифференцировки или трансдифференцировка (голубые линии) требует репрограммирования эпигенома клетки


Фенотипические изменения, происходящие в ряду клеточных поколений в ходе развития многоклеточного организма, были описаны Уодцингтоном как «эпигенетический ландшафт» (Waddington, 1957). Тем не менее, весь спектр клеток, от стволовых до полностью дифференцированных, обладает идентичными нуклеотидными последовательностями ДНК, но заметно различается по профилю генов, которые реально экспрессируются этими клетками. Исходя из этого, позднее пришли к определению эпигенетики как «ядерной наследственности, которая не основывается на различиях в нуклеотидной последовательности ДНК» (Holliday, 1994).

Со времени открытия двойной спирали ДНК и ранних трактовок эпигенетики наши знания об эпигенетическом контроле и лежащих в его основе механизмах существенно возросли, заставляя некоторых описывать эти знания в таких более «возвышенных» терминах, как «область науки», а не просто «феномены» (см Wolfe and Matzke, 1999; Roloff and Nuber, 2005; глава 1). За последнее десятилетие значительный прогресс был достигнут в отношении многих семейств энзимов, активно модифицирующих хроматин (см. ниже). Таким образом, используя современную терминологию, эпигенетику можно в молекулярном (механистическом) плане определить как «сумму изменений в хроматиновой матрице, которые в совокупности устанавливают и воспроизводят различные паттерны экспрессии генов (транскрипции) и сайленсинга на основе одного и того же генома».

4. Хроматиновая матрица

Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Империи Древнего Китая. От Цинь к Хань. Великая смена династий
Империи Древнего Китая. От Цинь к Хань. Великая смена династий

Книга американского исследователя Марка Эдварда Льюиса посвящена истории Древнего Китая в имперский период правления могущественных династий Цинь и Хань. Историк рассказывает об особой роли императора Цинь Шихуана, объединившего в 221 г. до н. э. разрозненные земли Китая, и формировании единой нации в эпоху расцвета династии Хань. Автор анализирует географические особенности Великой Китайской равнины, повлиявшие на характер этой восточной цивилизации, рассказывает о жизни в городах и сельской местности, исследует религиозные воззрения и искусство, а также систему правосудия и семейный уклад древних китайцев. Авторитетный китаист дает всестороннюю характеристику эпохи правления династий Цинь и Хань в истории Поднебесной, когда была заложена основа могущества современного Китая.

Марк Эдвард Льюис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература