Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

В дифференциальной геометрии четко показано, что на поверхностях, не являющихся плоскими, самая короткая линия, которая соединяет две точки, необязательно прямая, как это происходит в евклидовых пространствах. Именно поэтому пришлось ввести новое понятие (геодезическая линия), которое обозначает кратчайшую линию, соединяющую две точки поверхности. Этот принцип используется в воздушной и морской навигации для установления самых коротких маршрутов без прямых линий. Рассмотрим следующий рисунок.

На самом деле кратчайшее расстояние от аэропорта Мадрида до аэропорта Нью-Йорка — это расстояние, пройденное по кривой, нарисованной сверху от прямой, которая соединяет эти два города на карте. Очевидно, что на плоскости это не так, но на поверхности, подобной сферической (как Земля), геодезическая линия, то есть кратчайшая между двумя точками, не является прямой.

ГАУСС И ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Общая теория относительности — это устоявшееся название для обозначения гравитационной теории, опубликованной Альбертом Эйнштейном в 1915 году. В соответствии с общей теорией относительности сила гравитации — это локальное проявление геометрии времени-пространства. Релятивистскую модель в обычном евклидовом пространстве построить невозможно. В теории относительности необходимо, чтобы пятый постулат Евклида о параллельных прямых не имел единственного решения. Как мы уже видели, Гаусс, Лобачевский и Бойяи доказали, что эта аксиома не зависит от предыдущих и что от нее можно отказаться, не получив противоречия. Риман разработал общую математику для неевклидового пространства в своей докторской диссертации, руководителем которой был Гаусс. Без этих математических инструментов Эйнштейн не смог бы создать свои труды. Именно его вклад сделал неевклидову геометрию популярной, открыл ее настоящую ценность. До Эйнштейна считалось, что это лишь абстрактная теория, поэтому Гаусс ничего и не опубликовал на эту тему.

В изучении поверхностей Гаусс широко использовал параметрическое представление, введенное Эйлером, осуществляя внутреннее представление поверхности как двумерное изображение. Координаты точки (х, y, z) заданы тремя уравнениями в зависимости от двух параметров: х = х(u, v); у = у(u, v); z = z(u, v). Можно сказать, что стилистически «Общие исследования о кривых поверхностях» — самая совершенная работа Гаусса. Ее аналитическое, прямое и очень лаконичное изложение позволяет представить каждую геометрическую идею в полной форме. Как признавался сам Эйнштейн, «теории относительности не существовало бы без геометрии Гаусса».

ГАУСС И ФИЗИКА

Ключевым в жизни Гаусса был 1831 год. За год до этого его сын Ойген уехал в США из-за семейных размолвок, а в этом году умерла Минна, вторая супруга ученого, — возможно, от туберкулеза, и его дочь Тереза взяла на себя ведение хозяйства. В конце этого же года в Гёттинген приехал Вильгельм Вебер, чтобы занять место преподавателя физики. С этого момента павший было духом Гаусс вновь нашел в науке спасение от своих семейных бед.

Перейти на страницу:

Похожие книги