Хотя Гаусс не публиковал работ по неевклидовой геометрии, это не означает, что он вообще не занимался геометрическими проблемами. В 1827 году ученый представил фундаментальную работу о дифференциальной геометрии, использовавшую элементы математического анализа. Книга, озаглавленная Disquisitiones generales circa superficies curvas («Общие исследования о кривых поверхностях»), представляет собой вклад Гаусса в дифференциальную геометрию. В этой работе ученый создал дифференциальную геометрию поверхностей, которая в последующие десятилетия была дополнена работами многих математиков. Основная проблема здесь — это отражение на плоской карте геометрии других типов поверхностей. В самых простых случаях (при постоянной кривизне) появляются гомогенные геометрии: евклидова, эллиптическая и гиперболическая (именно ее разработали Бойяи и Лобачевский). Гаусс пошел намного дальше этих гомогенных пространств и ввел то, что сегодня называется кривизной Гаусса, — обобщение для поверхностей определенной кривизны на плоскости.
Это позволило ему сформулировать так называемую Theorema Egregium (выдающуюся теорему), главный результат дифференциальной геометрии. Говоря неформально, в теореме утверждается, что гауссова кривизна дифференцируемой поверхности может быть полностью определена посредством измерения углов и расстояний на самой поверхности, не ориентируясь на конкретную форму, которую она принимает в трехмерном евклидовом пространстве. Из этого следует, что понятие кривизны — это локальное свойство.
Изометрия — это математическое преобразование двух пространств, которое оставляет инвариантными расстояния между точками. Пример изометрии в евклидовом пространстве из трех измерений — это вращения. Итак, следствие из Theorema Egregium в том, что у двух поверхностей существуют изометрии, только если у них одинаковая гауссова кривизна. Очень показателен следующий пример: сфера с радиусом R имеет постоянную гауссову кривизну, равную R-2, в то время как плоскость имеет нулевую кривизну. Как следствие Theorema Egregium, лист бумаги невозможно согнуть или повернуть так, чтобы получилась часть сферы, не сминая или не надрезая его. И наоборот, поверхность сферы не может быть представлена как плоскость без искажения расстояний.
У этого факта есть важный вывод для картографии: нельзя построить карту Земли, на которой масштаб был бы одинаковым в каждой точке плоскости. Следовательно, все обычно используемые проекции изменяют масштаб в различных точках и дают некоторое искажение. Идеальной карты Земли не существует и не может существовать.