Читаем Есть идея! полностью

Дихотомия (последовательное разбиение множества на 2 части), играющая важную роль в вычислительной технике и теории автоматической сортировки данных, лежит в основе задачи об угадывании номера телефона Элен и позволяет читателю войти в круг вопросов, связанных с двоичной системой счисления. Принцип «птичка в клетке», известный также под названием принципа Дирихле, позволяет доказывать многие важные факты из теории чисел. Мы используем его для доказательства двух забавных утверждений: о бумажных долларах и о числе волос на голове человека. Свойство двух целых чисел быть взаимно простыми (не иметь общих делителей, кроме единицы) позволяет доказать, что, за исключением 12 часов, часовая, минутная и секундная стрелки часов никогда не совпадают (обычно это вычисление доказывают, проделывая довольно громоздкие выкладки).

Задача о счете по бутылкам легко решается, если воспользоваться понятием сравнения по модулю, и заставляет вспомнить о знаменитой задаче Иосифа Флавия, которую можно удивительно наглядно продемонстрировать при помощи колоды игральных карт.

Хотя задачи, собранные в этой главе, математики сочли бы тривиальными, открываемые ими направления для исследований в теории чисел далеко не тривиальны и не могут не поражать изяществом и идейным богатством древнейшей из всех дедуктивных систем — системы, оперирующей с символами, обозначающими знакомые всем числа.

Разбитые грампластинки

Больше всего на свете Боб и Элен любили всякого рода головоломки. Особенно им нравилось ставить в тупик друг друга и своих друзей каверзными вопросами.

Однажды, когда Боб и Элен проезжали мимо магазина грампластинок, Боб задал Элен вопрос.

Боб. Ты все еще собираешь пластинки с джазовой музыкой?

Элен. Нет, половину всех пластинок и еще полпластинки я подарила Сьюзен.

Элен. Половину оставшихся пластинок и еще полпластинки я подарила Джо.

Элен. После этого у меня осталась одна пластинка. Я подарю ее тебе, если ты скажешь, сколько пластинок было у меня в коллекции до того, как я начала ее раздавать.

Боб не сразу смог решить задачу, так как не мог понять, зачем Элен понадобилось дарить друзьям половинки пластинок.

Внезапно его осенила блестящая мысль, и он понял, что ни одна пластинка не была разбита на половники. Боб ответил на вопрос Элен, и та подарила ему последнюю пластинку из своей коллекция.

Какая мысль пришла Бобу в голову?

Половинки целого

Неужели вы попались в ловушку и не подумали, что половина чего-то и ½ могут оказаться целым числом? Если да, то, должно быть, попытались решить задачу, ведя счет на половинки грампластинок, и, запутавшись вскоре в вычислениях, оставили затею как безнадежную. Неожиданно простым решение получается, если догадаться, что половина от нечетного числа и еще половина равны целому числу.

По словам Элен, у нее после того, как она преподнесла свой второй подарок, осталась 1 пластинка. Значит, до того, как она подарила часть своих пластинок Джо, у нее должны были остаться 3 пластинки. Половина от 3 составляет 3/2, а 3/2 + 1/2 = 2, поэтому Элен подарила Джо 2 пластинки, после чего у нее осталась 1 пластинка. Продолжая решать задачи «задним ходом», нетрудно установить, что сначала у Элен было 7 пластинок и что 4 пластинки она подарила Сьюзи.

Разумеется, задачу можно было бы решать и алгебраически. Составление и решение соответствующего уравнения — превосходное упражнение по элементарной алгебре. Удивительно, что такая простая задача приводит к такому сложному уравнению:

Новые головоломки того же типа мы получим, варьируя параметры задачи. Предположим, например, что Элен каждый раз дарит кому-нибудь половину своих пластинок и еще полпластинки, проделывает это не дважды, а трижды и остается не с одной пластинкой, а без единой пластинки. Сколько пластинок было у нее сначала? Возможно, вам покажется странным, что ответ остается прежним — 7 пластинок, но удивительного здесь ничего нет: в третий раз Элен дарит последнюю оставшуюся у нее пластинку. А сколько пластинок было у нее сначала, если она дарит каждый раз половину своих пластинок и еще полпластинки и проделывает эту процедуру 4 раза, после чего у нее остается 1 пластинка? А если Элен дарит пластинки 5 раз? Какого рода последовательность порождают возникающие в этой серии задач числа?

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука