Читаем Есть идея! полностью

По-вашему, ей хватит 4 центов? А что вы скажете о бедной миссис Смит, которая безуспешно пыталась отвлечь от автомата для продажи жевательной резинки внимание своей тройни?

На этот раз в автомате находились 6 красных, 4 белых шарика и лишь 1 синий шарик. Сколько монет достоинством в 1 пенс следует приготовить миссис Смит, чтобы среди купленных шариков заведомо были 3 шарика одного цвета?

Сколько центов?

Вторая задача о шариках жевательной резинки лишь незначительно отличается от первой. Идея решения второй задачи по существу та же: первые три шарика могут быть разного цвета (например, один шарик может быть красным, один синим и один белым). Это наименее благоприятный случай, так как к достижению желаемого результата ведет самая длинная последовательность испытаний. Четвертый шарик заведомо совпадает по цвету с одним, из трех первых шариков. Итак, чтобы 2 шарика оказались одного и того же цвета, необходимо купить 4 шарика. Следовательно, миссис Джонс следует приготовить 4 цента.

Обобщение на случай n множеств шариков (каждое множество составляют шарики одного цвета) очевидно: если имеется n множеств шариков, то следует быть готовым к тому, что придется купить n + 1 шариков (чтобы 2 шарика заведомо были одного и того же цвета).

Третья задача потруднее двух предыдущих. У миссис Смит не близнецы, а тройня. В автомате находятся б красных, 4 белых шарика и 1 синий шарик. Сколько монет достоинством в 1 цент должна приготовить миссис Смит, чтобы среди шариков, выданных автоматом, заведомо были 3 шарика одного цвета?

Как и прежде, начнем с рассмотрения наименее благоприятного случая. Миссис Смит может получить из автомата 2 красных, 2 белых шарика и 1 синий шарик, то есть всего 5 шариков. Шестой шарик должен быть либо красным, либо белым и, следовательно, подходить по цвету к ранее выпавшим из автомата либо 2 красным, либо 2 белым шарикам. Значит, миссис Смит должна приготовить 6 центов. Если бы синих шариков в автомате было не меньше двух, то в наименее благоприятном случае миссис Смит могла бы сначала извлечь из автомата по 2 шарика каждого цвета, и, чтобы получить 3 шарика одного и того же цвета, ей непременно понадобился бы седьмой шарик.

«Неожиданное» решение — это своего рода «прозрение», позволяющее оценить длину серии испытаний в наименее благоприятном случае. Ту же задачу можно было бы решить и более сложным способом: обозначить каждый из 11 шариков «своей» буквой, выписать все возможные варианты выдачи шариков из автомата и установить, в каком случае длина цепочки испытаний до появления трех шаров одного цвета имеет наибольшую длину. Но при таком решении потребовалось бы перебрать 11! = 39 916 800 последовательностей всех возможных исходов испытаний. Если мы условимся не различать шары одного цвета, то и тогда при таком подходе пришлось бы перебрать 2310 последовательностей возможных исходов.

Обобщение задачи на случай, когда требуется определить наименьшее число монет, при котором из выданных автоматом шаров заведомо можно выбрать k шариков одного цвета, приводит к следующему решению. Если имеются шары n цветов (шаров каждого цвета не меньше k), то для получения k шаров одного цвета необходимо выбрать не более n(k − 1) + 1 шаров. Читателю доставит удовольствие самостоятельно исследовать, что произойдет в том случае, если шаров одного или нескольких цветов будет меньше k.

Задачи этого типа можно промоделировать не только на автоматах для продажи жевательной резинки, но и многими другими способами. Например, сколько карт необходимо вытащить из колоды в 52 листа, чтобы 7 карт заведомо были одной масти? Здесь n = 4, k = 7, и наша формула дает ответ? 4(7–1)+1=25.

Мы рассмотрели лишь очень простые комбинаторные задачи, но и они приводят к интересным и трудным вопросам теории вероятностей. Например, какова вероятность извлечь 7 карт одной масти, если вы вытаскиваете из колоды, не возвращая, n карт, где n — любое число от 7 до 24? (Вероятность извлечь 7 карт одной масти, очевидно, равна 0, если из колоды вытащить менее 7 карт, и равна 1, если вытащить более 24 карт). Как изменятся вероятности, если мы условимся возвращать каждую извлеченную карту и тщательно тасовать колоду перед тем, как вытягивать из нее очередную карту? Более трудный вопрос: каково математическое ожидание (среднее по длинной серии испытаний) числа карт, которые необходимо извлечь (с возвратом или без возврата) из колоды, чтобы k из них заведомо были одной масти?

Турнир по настольному теннису

Пять членов клуба любителей настольного тенниса средней школы им. Милларда Филмора решили провести между собой турнир по олимпийской системе.

Тренер составил таблицу розыгрыша турнира, снабдив ее следующими пояснениями.

Тренер. Пять — число нечетное, поэтому в первой круге один участник турнира свободен от игры. Еще один участник свободен от игры во втором круге. Таким образом, всего за турнир будет сыграно 4 партии.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука